OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 1 — Jan. 10, 2005
  • pp: 275–289

Requirements for segmented correctors for diffraction-limited performance in the human eye

Donald T. Miller, Larry N. Thibos, and Xin Hong  »View Author Affiliations


Optics Express, Vol. 13, Issue 1, pp. 275-289 (2005)
http://dx.doi.org/10.1364/OPEX.13.000275


View Full Text Article

Acrobat PDF (328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavefront correctors have yet to provide diffraction-limited imaging through the human eye’s ocular media for large pupils (?6 mm). To guide future improvements in corrector designs that might enable such imaging, we have modeled the performance of segmented piston correctors in conjunction with measured wave aberration data of normal human eyes (mean=34.2 yr; stdev=10.6 yr). The model included the effects of pupil size and wavelength in addition to dispersion, phase wrapping, and number and arrangement of facets in the corrector. Results indicate that ?100×100 facets are needed to reach diffraction-limited performance for pupils up to 8 mm (extrapolated) at 0.6 µm wavelength. Required facet density for the eye was found to be substantially higher at the pupil’s edge than at its center, which is in stark contrast to the requirements for correcting atmospheric turbulence. Substantially more facets are required at shorter wavelengths with performance highly sensitive to facet fill. In polychromatic light, the performance of segmented correctors based on liquid crystal technology was limited by the naturally occurring longitudinal chromatic aberration of the eye rather than phase wrapping and dispersion of the liquid crystal. Required facets to correct defocus alone was found highly sensitive to pupil size and decentration.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Research Papers

History
Original Manuscript: November 10, 2004
Revised Manuscript: December 25, 2004
Manuscript Accepted: December 30, 2004
Published: January 10, 2005

Citation
Donald T. Miller, Larry N. Thibos, and Xin Hong, "Requirements for segmented correctors for diffraction-limited performance in the human eye," Opt. Express 13, 275-289 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-1-275


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. K.  Tyson, Principles of Adaptive Optics (Academic Press, New York, 1998).
  2. J. W.  Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, New York, 1998).
  3. A. W.  Dreher, J. F.  Bille, R. N.  Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 24, 804–808 (1989). [CrossRef]
  4. J.  Liang, D. R.  Williams, D. T.  Miller, “Supernormal vision and high resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  5. H.  Hofer, L.  Chen, G. Y.  Yoon, B.  Singer, Y.  Yamauchi, D. R.  Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631. [CrossRef] [PubMed]
  6. A.  Roorda, F.  Romero-Borja, W. J.  Donnelly, H.  Queener, T. J.  Hebert, M. C. W.  Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405. [PubMed]
  7. D. T.  Miller, J.  Qu, R. S.  Jonnal, K.  Thorn, “Coherence gating and adaptive optics in the eye”, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII , V. V.  Tuchin, J. A.  Izatt, J. G.  Fujimoto, eds., Proc. SPIE 4956, 65–72 (2003).
  8. J.  Carroll, M.  Neitz, H.  Hofer, J.  Neitz, D. R.  Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. USA 101, 8461–8466 (2004). [CrossRef] [PubMed]
  9. N.  Ling, Y.  Zhang, X.  Rao, X.  Li, C.  Wang, Y.  Hu, W.  Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV , J. D.  Gonglewski, M. A.  Vorontsov, M. T.  Gruneisen, S. R.  Restaino, R. K.  Tyson, eds., Proc. SPIE 4825, 99–108 (2002).
  10. N.  Doble, G.  Yoon, L.  Chen, P.  Bierden, B.  Singer, S.  Olivier, D. R.  Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002). [CrossRef]
  11. L.  Zhu, P-C  Sun, D-U  Bartsch, W. R.  Freeman, Y.  Fainman, “Adaptive control of a micromachined continuous membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999). [CrossRef]
  12. B.  Hermann, E. J.  Fernández, A.  Unterhuber, H.  Sattmann, A. F.  Fercher, W.  Drexler, P. M.  Prieto, P.  Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004). [CrossRef] [PubMed]
  13. E. J.  Fernández, I  Iglesias, P.  Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001). [CrossRef]
  14. L.  Diaz-Santana, C.  Torti, I.  Munro, P.  Gasson, C.  Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11, 2597–2605 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597. [CrossRef] [PubMed]
  15. M.  Glanc, E.  Gendron, F.  Lacombe, D.  Lafaille, J.-F.  Le Gargasson, P.  Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004). [CrossRef]
  16. L. N.  Thibos, A.  Bradley, “Use of liquid-crystal adaptive optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997). [CrossRef]
  17. F.  Vargas-Martin, P. M.  Prieto, P.  Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998). [CrossRef]
  18. T.  Shirai, “Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging,” Appl. Opt. 41, 4013–4023 (2002). [CrossRef] [PubMed]
  19. A.  Awwal, B.  Bauman, D.  Gavel, S.  Olivier, S.  Jones, D.  Silva, J. L.  Hardy, T.  Barnes, J. S.  Werner, “Characterization and operation of a liquid crystal adaptive optics phoropter,” in Astronomical Adaptive Optics Systems and Applications , R. K.  Tyson, M.  Lloyd-Hart, eds., Proc. SPIE 5169, 104–122 (2003).
  20. P. M.  Prieto, E. J.  Fernández, S.  Manzanera, P.  Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4059. [CrossRef] [PubMed]
  21. H.  Zhao, D. T.  Miller, L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, N.  Himebaugh, “A Fried’s parameter for the human eye?,” presented at the Optical Society of America Annual Meeting, Provident, Rhode Island, 22–26 Oct. 2000.
  22. M. P.  Cagigal, V. F.  Canales, J. F.  Casteján-Mochán, P. M.  Prieto, N.  López-Gil, P.  Artal, “Statistical description of wave-front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002). [CrossRef]
  23. R.  Hudgin, “Wave-front compensation error due to finite corrector-element size,” J. Opt. Soc. Am. 67, 393–395 (1977). [CrossRef]
  24. M.  Loktev, D.W.D  Monteiro, G.  Vdovin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions,” Opt. Comm. 192, 91–99 (2001). [CrossRef]
  25. M. C.  Roggemann, B.  Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla, 1996).
  26. W. B.  King, “Dependence of the Strehl ratio on the magnitude of the variance of the wave aberration”, J. Opt. Soc. Am. 58, 655–661 (1967). [CrossRef]
  27. L. N.  Thibos, X.  Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76, 817–825 (1999). [CrossRef] [PubMed]
  28. N.  Davies, L.  Diaz-Santana, D.  Lara-Saucedo, “Repeatability of ocular wavefront measurement,” Optom. Vis. Sci. 80, 142–150 (2003). [CrossRef] [PubMed]
  29. ANSI, American National Standard for the Safe Use of Lasers, ANSI Z136.1-1993 (Laser Institute of America, Orlando, FL, 1993).
  30. L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002). [CrossRef]
  31. H. C.  Howland, “High order wave aberration of eyes,” Ophthalmic Physiol. Opt. 22, 434–439 (2002). [CrossRef] [PubMed]
  32. G. D.  Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1534 (1997). [CrossRef] [PubMed]
  33. Shin-Tson  Wu, “Birefringence dispersions of liquid crystals,” Physical Review A 33, 1270–1274 (1986). [CrossRef] [PubMed]
  34. L. N.  Thibos, M.  Ye, X.  Zhang, A.  Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992). [CrossRef] [PubMed]
  35. L.  Llorente, L.  Diaz-Santana, D.  Lara-Saucedo, S.  Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003). [CrossRef]
  36. M. C.  Rynders, B. A.  Lidkea, W. J.  Chisholm, L. N.  Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995). [CrossRef]
  37. S.  Marcos, S. A.  Burns, E.  Moreno-Barriusop, R.  Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999). [CrossRef]
  38. L. N.  Thibos, X.  Hong, A.  Bradley, R. A.  Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vis. 4, 329–351 (2004). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited