OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 1 — Jan. 10, 2005
  • pp: 296–308

Compensation for geometric mismodelling by anisotropies in optical tomography

Jenni Heino, Erkki Somersalo, and Jari P. Kaipio  »View Author Affiliations


Optics Express, Vol. 13, Issue 1, pp. 296-308 (2005)
http://dx.doi.org/10.1364/OPEX.13.000296


View Full Text Article

Enhanced HTML    Acrobat PDF (681 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an approach for the estimation of the optical absorption coefficient in medical optical tomography in the presence of geometric mismodelling. We focus on cases in which the boundaries of the measurement domain or the optode positions are not accurately known. In general, geometric distortion of the domain produces anisotropic changes for the material parameters in the model. Hence, geometric mismodelling in an isotropic case may correspond to an anisotropic model. We seek to approximate the errors due to geometric mismodelling as extraneous additive noise and to pose a simple anisotropic model for the diffusion coefficient. We show that while geometric mismodelling may deteriorate the estimates of the absorption coefficient significantly, using the proposed model enables the recovery of the main features.

© 2005 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Research Papers

History
Original Manuscript: October 20, 2004
Revised Manuscript: December 28, 2004
Manuscript Accepted: January 2, 2005
Published: January 10, 2005

Citation
Jenni Heino, Erkki Somersalo, and Jari P. Kaipio, "Compensation for geometric mismodelling by anisotropies in optical tomography," Opt. Express 13, 296-308 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-1-296


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R.  Arridge, “Optical tomography in medical imaging,” Inv. Probl. 15, R41–R93 (1999). [CrossRef]
  2. I.  Nissilä, T.  Noponen, J.  Heino, T.  Kajava, T.  Katila “Diffuse optical imaging,” in Advances in Electromagnetic Fields in Living Systems 4, J.  Lin, ed. (Kluwer, New York, to be published)
  3. H.  Dehghani, B. W.  Pogue, S. P.  Poplack, K. D.  Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003). [CrossRef] [PubMed]
  4. A.  Li, E. L.  Miller, M. E.  Kilmer, T. J.  Brukilacchio, T.  Chaves, J.  Stott, Q.  Zhang, T.  Wu, M.  Chorlton, R. H.  Moore, D. B.  Kopans, D. A.  Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003). [CrossRef] [PubMed]
  5. B. W.  Pogue, S. P.  Poplack, T. O.  McBride, W. A.  Welss, K. S.  Osterman, U. L.  Ostenberg, K. D.  Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast,” Radiology 218, 261–266 (2001). [PubMed]
  6. M. A.  Franceschini, K. T.  Moesta, S.  Fantini, G.  Gaida, E.  Gratton, H.  Jess, W. W.  Mantulin, M.  Seeber, P. M.  Schlag, M.  Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997). [CrossRef] [PubMed]
  7. B.  Chance, E.  Anday, S.  Nioka, S.  Zhou, L.  Hong, K.  Worden, C.  Li, T.  Murray, Y.  Ovetsky, D.  Pidikiti, R.  Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Exp. 2, 411–423 (1998). [CrossRef]
  8. M. A.  Franceschini, V.  Toronov, M. E.  Filiaci, E.  Gratton, S.  Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Exp. 6, 49–57 (2000). [CrossRef]
  9. A. Y.  Bluestone, G.  Abdoulaev, C. H.  Schmitz, R.  Barbour, A. H.  Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Exp. 9, 272–286 (2001). [CrossRef]
  10. J. C.  Hebden, A.  Gibson, R. M.  Yusof, N.  Everdell, E. M. C.  Hillman, D. T.  Delpy, S. R.  Arridge, T.  Austin, J. H.  Meek, J. S.  Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002). [CrossRef] [PubMed]
  11. J. C.  Hebden, A.  Gibson, T.  Austin, R.  Yusof, N.  Everdell, D. T.  Delpy, S. R.  Arridge, J. H.  Meek, J. S.  Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004). [CrossRef] [PubMed]
  12. J. J.  Stott, J. P.  Culver, S. R.  Arridge, D. A.  Boas, “Optode positional calibration in diffuse optical tomography,” Appl. Opt. 42, 3154–3162 (2003). [CrossRef] [PubMed]
  13. D. A.  Boas, T.  Gaudette, S. R.  Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Exp. 8, 263–270 (2001). [CrossRef]
  14. T.  Tarvainen, V.  Kolehmainen, M.  Vauhkonen, A.  Vanne, J. P.  Kaipio, A. P.  Gibson, S. R.  Arridge, M.  Schweiger, “Computational calibration method for optical tomography,” Applied Optics, 2005, in press. [CrossRef] [PubMed]
  15. J. P.  Kaipio, E.  Somersalo, Computational and Statistical Methods for Inverse Problems (Applied Mathematical Sciences 160, Springer-Verlag, New York, ISBN 0-387-22073-9, 2004).
  16. S. R.  Arridge, M.  Schweiger, M.  Hiraoka, D. T.  Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef] [PubMed]
  17. M.  Schweiger, S. R.  Arridge, M.  Hiraoka, D. T.  Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef] [PubMed]
  18. J.  Heino, E.  Somersalo, “Estimation of optical absorption in anisotropic background,” Inv. Probl. 18, 559–73 (2002). [CrossRef]
  19. J.  Sylvester, “An anisotropic inverse boundary value problem,” Comm. Pure Appl. Math. 43, 201–232 (1990). [CrossRef]
  20. V.  Kolehmainen, Department of Applied Physics, University of Kuopio, P.O.B 1627, FIN-70211 Kuopio, Finland, M. Lassas, and P. Ola are preparing a manuscript to be called “Inverse conductivity problem with an imperfectly known boundary.”
  21. S.  Järvenpää, Implementation of PML Absorbing Boundary Condition for Solving Maxwell’s Equations with Whitney Elements (PhD Thesis, University of Helsinki, 2001). [PubMed]
  22. J.  Heino, E.  Somersalo, “A modelling error approach for the estimation of optical absorption in the presence of anisotropies,” Phys. Med. Biol. 49, 4785–4798 (2004) . [CrossRef] [PubMed]
  23. Åke  Björck, Numerical Methods for Least Squares Problems (SIAM, Philadelphia, 1996). [CrossRef]
  24. J. E.  Dennis, R. B.  Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (SIAM, Philadelphia, 1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited