OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 1 — Jan. 10, 2005
  • pp: 309–314

Photonic bandgap with an index step of one percent

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St.J. Russell  »View Author Affiliations

Optics Express, Vol. 13, Issue 1, pp. 309-314 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (3758 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Early work suggested that very large refractive index contrasts would be needed to create photonic bandgaps in two or three dimensionally periodic photonic crystals. It was then shown that in two-dimensionally periodic structures (such as photonic crystal fibres) a non-zero wavevector component in the axial direction permits photonic bandgaps for much smaller index contrasts. Here we experimentally demonstrate a photonic bandgap fibre made from two glasses with a relative index step of only 1%.

© 2005 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(230.4000) Optical devices : Microstructure fabrication

ToC Category:
Research Papers

Original Manuscript: November 22, 2004
Revised Manuscript: December 30, 2004
Manuscript Accepted: January 2, 2005
Published: January 10, 2005

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St.J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D.  Joannopoulos, R. D.  Meade, J. N.  Winn, Photonic Crystals (Princeton University Press, 1995).
  2. P. R.  Villeneuve, M.  Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 48, 4969–72 (1992). [CrossRef]
  3. T. A.  Birks, P. J.  Roberts, P. St. J.  Russell, D. M.  Atkin, T. J.  Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–2 (1995). [CrossRef]
  4. R. F.  Cregan, B. J.  Managan, J. C.  Knight, T. A.  Birks, P. St. J.  Russell, P. J.  Roberts, D. C.  Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–9 (1999). [CrossRef] [PubMed]
  5. D. C.  Allen et al. in Photonic Crystals and Light Localization in the 21st Century (ed. C. M.  Soukoulis) 305–320 (Kluwer Academic, Dordrecht, 2001).
  6. C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Muller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–9 (2003). [CrossRef] [PubMed]
  7. R. T.  Bise, R. S.  Windeler, K. S.  Kranz, C.  Kerbage, B. J.  Eggleton, D. J.  Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication , Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002) 466–8.
  8. T. P.  White, R. C.  McPhedran, C. M.  de Sterke, N. M.  Litchinitser, B. J.  Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977–9 (2002). [CrossRef]
  9. F.  Luan, A. K.  George, T. D.  Hedley, G. J.  Pearce, D. M.  Bird, J. C.  Knight, P. St. J.  Russell, “All-solid photonic band gap fiber,” Opt. Lett. 29, 2369–71 (2004). [CrossRef] [PubMed]
  10. P. St. J.  Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]
  11. N. M.  Litchinitser, A. K.  Abeeluck, C.  Headley, B. J.  Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–4 (2002). [CrossRef]
  12. J.  Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A 6, 798–804 (2004). [CrossRef]
  13. J.  Riishede, J.  Lægsgaard, J.  Broeng, A.  Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” J. Opt. A 6, 667–70 (2004). [CrossRef]
  14. T. A.  Birks, D. M.  Bird, T. D.  Hedley, J. M.  Pottage, P. St. J.  Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express 12, 69–74 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-69. [CrossRef] [PubMed]
  15. P.  Yeh, A.  Yariv, E.  Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978). [CrossRef]
  16. Y.  Fink, D. J.  Ripin, S. H.  Fan, C. P.  Chen, J. D.  Joannopoulos, E. L.  Thomas, “Guiding optical light in air using an all-dielectric structure,” IEEE J. Lightwave Technol. 17, 2039–41 (1999). [CrossRef]
  17. F.  Brechet, P.  Leproux, P.  Roy, J.  Marcou, D.  Pagnoux, “Analysis of bandpass filtering behaviour of singlemode depressed-core-index photonic-bandgap fibre,” Electron. Lett. 36, 870–2 (2000). [CrossRef]
  18. Corning Corguide, core diameter 50 µm, cladding diameter 125 µm, numerical aperture 0.21.
  19. Corning SMF-28, core diameter 9 µm, cladding diameter 125 µm, index contrast 0.36%, second-mode cutoff wavelength <1260 nm.
  20. J.  Hecht, Understanding Fiber Optics (Prentice Hall, Columbus, 1999).
  21. A. W.  Snyder, J. D.  Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  22. R. J.  Black, J.  Lapierre, J.  Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J 134, 105–110 (1987).
  23. W. A.  Gambling, H.  Matsumura, “Simple characterisation factor for practical single-mode fibres,” Electron. Lett. 13, 691–3 (1977). [CrossRef]
  24. W. J.  Wadsworth, N.  Joly, J. C.  Knight, T. A.  Birks, F.  Biancalana, P. St. J.  Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299–309 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299. [CrossRef] [PubMed]
  25. N. A.  Issa, L.  Poladian, “Vector wave expansion method for leaky modes of microstructured fibers,” IEEE J. Lightwave Technol. 21, 1005–12 (2003). [CrossRef]
  26. M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–10 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited