OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 1 — Jan. 10, 2005
  • pp: 38–43

Photonic crystal directional couplers formed by InAlGaAs nano-rods

Chii-Chang Chen, Chih-Yu Chen, Wen-Kai Wang, Fan-Hsiu Huang, Cheng-Kuo Lin, Wei-Yu Chiu, and Yi-Jen Chan  »View Author Affiliations

Optics Express, Vol. 13, Issue 1, pp. 38-43 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (836 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study demonstrates the use of photonic crystal directional couplers to separate light of wavelengths 1.31 and 1.55µm. The photonic crystal structure consists of InAlGaAs nano-rods arranged in square lattice. The coupling length of the light in the directional coupler at a wavelength of 1.31µm was designed to be four times greater than that at 1.55µm. This behavior helps in designing devices to split the two wavelengths. The devices are fabricated by e-beam lithography and conventional photolithography. The measurement results confirm that 1.31µm/1.55µm directional couplers can be realized in PC structures formed by nano-rods.

© 2005 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

Original Manuscript: November 22, 2004
Revised Manuscript: December 17, 2004
Manuscript Accepted: December 19, 2004
Published: January 10, 2005

Chii-Chang Chen, Chih-Yu Chen, Wen-Kai Wang, Fan-Hsiu Huang, Cheng-Kuo Lin, Wei-Yu Chiu, and Yi-Jen Chan, "Photonic crystal directional couplers formed by InAlGaAs nano-rods," Opt. Express 13, 38-43 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P.  Halevi, A. A.  Krokhin, J.  Arriaga, “Photonic crystals as optical components,” Appl. Phys. Lett. 75, 2725–2727 (1999). [CrossRef]
  2. C. C.  Chen, H. D.  Chien, P. G.  Luan, “Photonic Crystal Beam Splitters,” Appl. Opt. 43, 6188–6190 (2004). [CrossRef]
  3. A.  Lupu, E.  Cassan, S.  Laval, L.  El Melhaoui, P.  Lyan, J. M.  Fedeli, “Experimental evidence for superprism phenomena in SOI photonic crystals,” Opt. Express 12, 5690–5696 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5690 [CrossRef] [PubMed]
  4. K. B.  Chung, S. W.  Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549–1551 (2002). [CrossRef]
  5. B.  D’Urso, O.  Painter, J.  O’Brien, T.  Tombrello, A.  Yariv, A.  Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am B 15, 1155–1159 (1998). [CrossRef]
  6. T.  Baba, A.  Motegi, T.  Iwai, N.  Fukaya, Y.  Watanabe, A.  Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002). [CrossRef]
  7. N.  Kawai, K.  Inoue, N.  Carlsson, N.  Ikeda, Y.  Sugimoto, K.  Asakawa, T.  Takemori, “Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001). [CrossRef] [PubMed]
  8. M.  Augustin, H.-J.  Fuchs, D.  Schelle, E.-B.  Kley, S.  Nolte, A.  Tunnermann, R.  Iliew, C.  Etrich, U.  Peschel, F.  Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004). [CrossRef]
  9. S. S.  Lo, M. S.  Wang, C. C.  Chen, “Semiconductor Hollow Optical Waveguides formed by Omni-Directional Reflectors,” Opt. Express (to be published).
  10. M.  Thorhauge, L. H.  Frandsen, P. I.  Borel, “Efficent photonic crystal directional couplers,” Opt. Lett. 28, 1525–1527 (2003). [CrossRef] [PubMed]
  11. Y.  Sugimoto, Y.  Tanaka, N.  Ikeda, T.  Yang, H.  Nakamura, K.  Asakawa, K.  Inoue, T.  Maruyama, K.  Miyashita, K.  Ishida, Y.  Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,”Appl. Phys. Lett. 83, 3236–3238 (2003). [CrossRef]
  12. P. I.  Borel, L. H.  Frandsen, M.  Thorhauge, A.  Harpøth, Y. X.  Zhuang, M.  Kristensen, “Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light,” Opt. Express 11, 1757–1762 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1757 [CrossRef] [PubMed]
  13. M.  Tokushima, H.  Yamada, “Photonic crystal line defect waveguide directional coupler,” Electron. Lett. 37,1454–1455 (2001). [CrossRef]
  14. F.  Cuesta-Soto, A.  Martínez, J.  García, F.  Ramos, P.  Sanchis, J.  Blasco, J.  Martí, “All-Optical switching structure based on a photonic crystal directional coupler,” Opt. Express 12, 161–167 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-161 [CrossRef] [PubMed]
  15. A.  Sharkawy, S.  Shi, D. W.  Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048–1059 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-161 [PubMed]
  16. F.  Cuesta, A.  Griol, A.  Martínez, J.  Martí, “Experimental demonstration of photonic crystal directional coupler at microwave,” Electron. Lett. 39, 455–456 (2003). [CrossRef]
  17. S. L.  Chuang, “Physics of optoelectronic devices,” eds. (Wiley Interscience, New York, NY, 1995), pp. 708–709.
  18. S.  Adachi, “GaAs, AlAs, and AlxGa1-xAs Material parameters for use in research and device applications,” J. Appl. Phys. 58, R1–R29 (1985). [CrossRef]
  19. Y.  Park, Y.  Park, Y. G.  Roh, C. O  Cho, H.  Jeon, M. G.  Sung, J. C.  Woo, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett., 82, 2770–2772 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited