OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 1 — Jan. 10, 2005
  • pp: 56–69

Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition

Ignacio Del Villar, Ignacio R. Matías, Francisco J. Arregui, and Philippe Lalanne  »View Author Affiliations


Optics Express, Vol. 13, Issue 1, pp. 56-69 (2005)
http://dx.doi.org/10.1364/OPEX.13.000056


View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The deposition of an overlay of higher refractive index than the cladding in a Long Period Fiber Grating (LPFG) permits to improve the sensitivity to ambient refractive index changes in a great manner. When the overlay is thick enough, one of the cladding modes is guided by the overlay. This causes important shifts in the effective index values of the cladding modes, and henceforward fast shifts of the resonance wavelength of the attenuations bands in the transmission spectrum. This could be applied for improving the sensitivity of LPFG sensors. The problem is analysed with a numerical method based on LP mode approximation and coupled mode theory, which agrees with so far published experimental results.

© 2005 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(260.2110) Physical optics : Electromagnetic optics
(310.1860) Thin films : Deposition and fabrication

ToC Category:
Research Papers

History
Original Manuscript: November 8, 2004
Revised Manuscript: December 20, 2004
Manuscript Accepted: December 20, 2004
Published: January 10, 2005

Citation
Ignacio Del Villar, Ignacio R. Matías, Francisco J. Arregui, and Philippe Lalanne, "Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition," Opt. Express 13, 56-69 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-1-56


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R.  Qiang, H. E.  Chen, “Gain flattening fibre filters using phase shifted long period fibre grating,” Electron. Lett. 34, 1132–1133 (1998). [CrossRef]
  2. A. M.  Vengsarkar, P. J.  Lemaire, J. B.  Judkins, V.  Bhatia, T.  Erdogan, J. E.  Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996). [CrossRef]
  3. B. J.  Eggleton, R. E.  Slusher, J. B.  Judkins, J. B.  Stark, A. M.  Vengsarkar, “All-optical switching in long period fiber gratings,” Opt. Lett. 22, 883–885 (1997). [CrossRef] [PubMed]
  4. K. W.  Chung, S.  Yin, “Analysis of widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling,” Opt. Lett. 29, 812–814 (2004). [CrossRef] [PubMed]
  5. V.  Bhatia, A. M.  Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996). [CrossRef] [PubMed]
  6. V.  Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Exp. 4, 457–466 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-11-457. [CrossRef]
  7. Y. G.  Han, S. B.  Lee, C. S.  Kim, J. U.  Kang, U. C.  Paek, Y.  Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Exp. 11, 476–481 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-476. [CrossRef]
  8. C. C.  Ye, S. W.  James, R. P.  Tatam, “Simultaneous temperature and bend sensing using using long-period fiber gratings,” Opt. Lett. 25, 1007–1009 (2000). [CrossRef]
  9. H. J.  Patrick, A. D.  Kersey, F.  Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606–1612 (1998). [CrossRef]
  10. R.  Hou, Z.  Ghassemlooy, A.  Hassan, C.  Lu, K. P.  Dowker, “Modelling of long-period fibre grating response to refractive index higher than that of cladding,” Meas. Sci. Technol. 12, 1709–1713 (2001). [CrossRef]
  11. S. T.  Lee, R. D.  Kumar, P. S.  Kumar, P.  Radhakrishnan, C. P. G.  Vallabhan, V. P. N.  Nampoori, “Long period gratings in multimode optical fibers: application in chemical sensing,” Opt. Comm. 224, 237–241 (2003). [CrossRef]
  12. N. D.  Rees, S. W.  James, R. P.  Tatam, G. J.  Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27, 686–688 (2002). [CrossRef]
  13. S. W.  James, R. P.  Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci Technol. 14, R49–R61 (2003). [CrossRef]
  14. E.  Anemogiannis, E. N.  Glytsis, T. K.  Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimutal/radial refractive index variation,” J. Lightwave Technol. 21, 218–227 (2003). [CrossRef]
  15. T.  Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  16. T.  Erdogan, “Cladding-mode resonances in short- and long-period fiber gratings filters,” J. Opt. Soc. Am. A, 14, 1760–1773 (1997). [CrossRef]
  17. D. B.  Stegall, T.  Erdogan, “Leaky cladding mode propagation in long-period fiber grating devices,” IEEE Photon. Technol. Lett. 11, 343–345 (1999). [CrossRef]
  18. Y.  Koyamada, “Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings,” IEEE Photon. Technol. Lett. 13, 308–310 (2001). [CrossRef]
  19. I.  Del Villar, M.  Achaerandio, I. R.  Matías, F. J.  Arregui, “Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings,” Opt. Lett. In press.
  20. K.  Morishita, “Numerical analysis of pulse broadening in grated index optical fibers,” IEEE Trans. Microwave Theory Tech. 29, 348–352 (1981). [CrossRef]
  21. D.  Gloge, “Weakly guiding fibers,” App. Opt. 10, 2252–2258 (1971). [CrossRef]
  22. A. K.  Ghatak, K.  Thyagarajan, M. R.  Shenoy, IEEE J. Lightwave Technol. 5, 660–667(1987). [CrossRef]
  23. A. W.  Snyder, J. D.  Love, Optical waveguide theory (London U.K: Chapman and Hall, 1983).
  24. K.  Skjonnemand, “Optical and structural characterisation of ultra thin films,” Ph.D. disseration (Cranfield University, Bedford, UK, 2000).
  25. G.  Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science, 277, 1232–1237 (1997). [CrossRef]
  26. S. A.  Khodier, “Refractive index of standard oils as a function of wavelength and temperature,” Optics & Laser Tech., 34, 125–128 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited