OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 1 — Jan. 10, 2005
  • pp: 8–19

Optical study of the structural change in ReS2 single crystals using polarized thermoreflectance spectroscopy

Ching-Hwa Ho  »View Author Affiliations

Optics Express, Vol. 13, Issue 1, pp. 8-19 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (401 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this report the optical properties of ReS2 are characterized using polarized thermoreflectance (PTR) measurements in the temperature range between 25 and 300 K. Single crystals of ReS2 were grown by chemical vapor transport method using Br2 as a transport agent. Crystal morphologies of the as-grown rhenium disulfides were shown to possess two different kinds of the structural phases after crystallization. Observing in detail on the crystallized solids, the crystal phases can be essentially divided into two distinct types of normal triclinic layer and tetragonal structure. The PTR experiments were done with optical polarizations along and perpendicular to the crystals’ b -axis for both layer and tetragonal crystals. From the experimental analyses of PTR measurements the occurrence of structural change in ReS2 is mostly probable caused by the atomic bonding deformation along b -axis, which is parallel to the Re4 parallelogram consisted diamond chains. Temperature dependences of the band-edge transitions for the different structural phases of ReS2 are analyzed. The parameters that describe temperature variations of the transition energies and broadening parameters for both layered and tetragonal ReS2 are evaluated and discussed.

© 2005 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(300.6380) Spectroscopy : Spectroscopy, modulation
(300.6470) Spectroscopy : Spectroscopy, semiconductors

ToC Category:
Research Papers

Original Manuscript: November 2, 2004
Revised Manuscript: December 14, 2004
Manuscript Accepted: December 18, 2004
Published: January 10, 2005

Ching-Hwa Ho, "Optical study of the structural change in ReS2 single crystals using polarized thermoreflectance spectroscopy," Opt. Express 13, 8-19 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V.  Marzik, R.  Kershaw, K.  Diwght, A.  Wold, “Photoelectronic properties of ReS2 and ReSe2 single crystals,” J. Solid State Chem. 51, 170–175 (1984). [CrossRef]
  2. C. H.  Ho, P. C.  Liao, Y. S.  Huang, T. R.  Yang, K. K.  Tiong, “Optical absorption of ReS2 and ReSe2 single crystals,” J. Appl. Phys. 81, 6380–6383 (1997). [CrossRef]
  3. J. A.  Wilson, A. D.  Yoffe, “The transition metal dichalcogenides: discussion and interpretation of the observed optical, electrical and structural Properties,” Adv. Phys. 18, 193–335 (1969). [CrossRef]
  4. H. S.  Broadbent, L. H.  Slangh, N. L.  Jarvis, “Rhenium sulfides as liquid-phase hydrogenation catalysts. A comparison with Molybdenum sulfide and Cobalt polysulfide,” J. Am. Chem. Soc. 76, 1519–1523 (1954). [CrossRef]
  5. S.  Harris, R. R.  Chianelli, “Catalysis by transition metal sulfides: The relation between calculated electronic trends and HDS activity,” J. Catal. 86, 400–412 (1984). [CrossRef]
  6. F. P.  Koffyberg, K.  Dwight, A.  Wold, “Interband transitions of semiconducting oxides determined from photoelectrolysis spectra,” Solid State Commun. 30, 433–437 (1979). [CrossRef]
  7. B. L.  Wheeler, J. K.  Leand, A. J.  Bard, “Semiconductor electrodes LX. photoelectrochemistry of p-ReS2 and p-ReSe2 in aqueous solutions,” J. Electrochem. Chem. 133, 358–361 (1986). [CrossRef]
  8. C. H.  Ho, Y. S.  Huang, K. K.  Tiong, P. C.  Liao, “Absorption-edge anisotropy in ReS2 and ReSe2 layered semiconductors,” Phys. Rev. B 58, 16130–16135 (1998). [CrossRef]
  9. C. H.  Ho, P. C.  Liao, Y. S.  Huang, K. K.  Tiong, “Piezoreflectance study of the band-edge excitons of ReS2 ,” Solid State Commun. 103, 19–23 (1997). [CrossRef]
  10. C. H.  Ho, Y. S.  Huang, K. K.  Tiong, “In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals,” J. Alloys Comp. 317–318, 222–226 (2001). [CrossRef]
  11. K.  Friemelt, M.-Ch.  Lux-Steiner, E.  Bucher, “Optical properties of the layered transition-metal-dichalcogenide ReS2: Anisotropy in the van der Waals plane,” J. Appl. Phys. 74, 5266–5268 (1993). [CrossRef]
  12. C. H.  Ho, P. C.  Yen, Y. S.  Huang, K. K.  Tiong, “Photoreflectance study of the excitonic transitions of rhenium disulphide layer compounds,” Phys. Rev. B 66, 245207 (2002). [CrossRef]
  13. C. H.  Ho, H. W.  Lee, C. C.  Wu, “Polarization sensitive behavior of the band-edge transitions in ReS2 and ReSe2 layered semiconductors,” J. Phys.: Condens. Matter 16, 5937–5944 (2004). [CrossRef]
  14. J. C.  Wildervanck, F.  Jellinek, “The dichalcogenides of technetium and rhenium,” J. Less-Common Met. 24, 73–81 (1971). [CrossRef]
  15. C. H.  Ho, Y. S.  Huang, P. C.  Liao, K. K.  Tiong, “Crystal structure and band-edge transitions of ReS2-xSex layered compounds,” J. Phys. Chem. Solids 60, 1797–1804 (1999). [CrossRef]
  16. H. -J.  Lamfers, A.  Meetsma, G. A.  Wiegers, J. L.  de Boer, “The crystal structure of some rhenium and technetium dichalcogenides,” J. Alloys and comp. 241, 34–39 (1996). [CrossRef]
  17. C. H.  Ho, H. W.  Lee, Z. H.  Cheng, “Practical thermoreflectance design for optical characterization of layer semiconductors,” Rev. Sci. Instrum. 75, 1098–1102 (2004). [CrossRef]
  18. D. E.  Aspnes, in Handbook on Semiconductors, edited by M.  Balkanski (North Holland, Amsterdam, 1980) 109.
  19. F. H.  Pollak, H.  Shen, “Modulation Spectroscopy of semiconductors: bulk/thin film, microstructures, surface/interfaces and devices,” Mater. Sci. Eng. R 10, 275–374 (1993). [CrossRef]
  20. K. S.  Coleman, J.  Sloan, N. A.  Hanson, G.  Brown, G. P.  Clancy, M.  Terrones, H.  Terrones, M. L. H.  Green, “The formation of ReS2 inorganic Fullerene-like structures containing Re4 parallelogram units and metal-metal bonds,” J. Am. Chem. Soc. 124, 11580–11581 (2002). [CrossRef] [PubMed]
  21. M.  Brorson, T. W.  Hansen, C. J. H.  Jacobsen, “Rhenium(IV) sulfide nanotubes,” J. Am. Chem. Soc. 124, 11582–11583 (2002). [CrossRef] [PubMed]
  22. Y. P.  Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967). [CrossRef]
  23. K. P.  O’Donnel, X  Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2926 (1991). [CrossRef]
  24. Z.  Hang, D.  Yan, F. H.  Pollak, G. D.  Pettit, J. M.  Woodall, “Temperature dependence of the direct band gap of InxGa1-xAs (x=0.06 and 0.15),” Phys. Rev. B 44, 10546–10550 (1991). [CrossRef]
  25. L.  Malikova, W.  Krystek, F. H.  Pollak, N.  Dai, A.  Cavus, M. C.  Tamargo, “Temperature dependence of the direct gaps of ZnSe and Zn0.56Cd0.44Se,” Phys. Rev. B 54, 1819–1824 (1996). [CrossRef]
  26. S.  Logothetidis, M.  Cardona, P.  Lautenschlager, M.  Garriga, “Temperature dependence of the dielectric function and the interband critical points of CdSe,” Phys. Rev. B 34, 2458–2469(1986). [CrossRef]
  27. P.  Lantenschlager, M.  Garriga, S.  Logothetidis, M.  Cardona, “Interband critical points of GaAs and their temperature dependence,” Phy. Rev. B 35, 9174–9189 (1987). [CrossRef]
  28. Z.  Hang, H.  Shen, Fred H.  Pollak, “Temperature dependence of the Eo and Eo+?0 gaps of InP up to 600°C,” Solid State Comm. 73, 15–18 (1990). [CrossRef]
  29. H.  Qiang, F. H.  Pollak, C. M.  Sotomayor Torres, W.  Leitch, A. H.  Kean, M.  Stroscio, G. J.  Jafrate, K. W.  Kim, “Size dependence of the thermal broadening of the exciton linewidth in GaAs/Ga0.7Al0.3As single quantum wells,” Appl. Phys. Lett. 61, 1411–1413 (1992). [CrossRef]
  30. S. Y.  Chung, D. Y.  Lin, Y. S.  Huang, K. K.  Tiong, “Piezoreflectance study of InP near the absorption edge,” Semicond. Sci. Technol. 11, 1850–1856 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited