OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 10 — May. 16, 2005
  • pp: 3600–3618

Evaluation of photon migration using a two speed model for characterization of packed powder beds and dense particulate suspensions

Tianshu Pan, Sarabjyot Dali, and Eva Sevick-Muraca  »View Author Affiliations

Optics Express, Vol. 13, Issue 10, pp. 3600-3618 (2005)

View Full Text Article

Acrobat PDF (574 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A two-speed photon diffusion equation is developed for light propagation in a powder bed of high volume fraction or dense particulate suspension, whereby the light speed is impacted by the refractive index difference between particles and the suspending medium. The equation is validated using Monte Carlo simulation of light propagation coupled with dynamic simulation of particle sedimentation for the non-uniform arrangement of powder particles. Frequency domain experiments at 650 nm for a 77-µm-diameter resin-powder and 50-µm-diameter lactose-powder beds as well as resin-water and lactose-ethanol suspensions confirm the scattering and absorption coefficients derived from the two-speed diffusion equation.

© 2005 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(170.5280) Medical optics and biotechnology : Photon migration
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles

ToC Category:
Research Papers

Original Manuscript: February 14, 2005
Revised Manuscript: April 29, 2005
Published: May 16, 2005

Tianshu Pan, Sarabjyot Dali, and Eva Sevick-Muraca, "Evaluation of photon migration using a two speed model for characterization of packed powder beds and dense particulate suspensions," Opt. Express 13, 3600-3618 (2005)

Sort:  Journal  |  Reset


  1. R. R. Shinde, G. V. Balgi, S. L. Nail, and E. M. Sevick, �??Frequency-domain photon migration measurements for quantitative assessment of powder absorbance: a novel sensor of blend homogeneity,�?? J. Pharm. Sci. 88, 959-966 (1999). [CrossRef]
  2. T. Pan and E. M. Sevick-Muraca, �??Volume of pharmaceutical powders probed by frequency-domain photon migration measurements of multiply scattered light,�?? Anal. Chem. 74, 4228-4234 (2002). [CrossRef]
  3. T. Pan, D. Barber, D. Coffin-Beach, Z. Sun, and E. M. Sevick-Muraca, �??Measurement of low dose active pharmaceutical ingredient in a pharmaceutical blend using frequency-domain photon migration,�?? J. Pharm. Sci. 93, 635-645 (2004). [CrossRef]
  4. Z. Sun, S. Torrance, F. K. McNeil-Watson, and E. M. Sevick-Muraca, �??Application of frequency domain photon migration to particle size analysis and monitoring of pharmaceutical powders,�?? Anal. Chem. 75, 1720-1725 (2003). [CrossRef]
  5. S. E. Torrance, Z. Sun, and E. M. Sevick-Muraca, �??Impact of excipient particle size on measurement of active pharmaceutical ingredient absorbance in mixtures using frequency domain photon migration,�?? J. Pharm. Sci. 93, 1879-1889 (2004). [CrossRef]
  6. V. Venugopalan, J. S. You, and B. J. Tromberg, �??Radiative transport in the diffusion approximation: an extension for highly absorbing medium and small source-detector separations,�?? Phys. Rev. E 58, 2395-2407 (1998). [CrossRef]
  7. J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis, (John Wiley & Sons, 1976 ), Chapter 4.
  8. A. F. Henry, Nuclear-Reactor Analysis, (The MIT Press, 1975), Chapter 9.
  9. R. Y. Yang, R. P. Zou, and A. B. Yu, �??Effect of material properties on the packing of fine particles,�?? J. Appl. Phys. 94, 3025-3034 (2003). [CrossRef]
  10. J. P. Hansen and I. R. McDonald, Theory of Simple Liquid, (Academic Press, 1986), Chapter 3.
  11. Z. Sun and E. M. Sevick-Muraca, �??Investigation of particle interactions in dense colloidal suspensions using frequency domain photon migration: bidisperse systems,�?? Langmuir 18, 1091-1097 (2002). [CrossRef]
  12. Y. Huang, Z. Sun, and E. M. Sevick-Muraca, �??Assessment of electrostatic interaction in dense colloidal suspensions with multiply scattered light,�?? Langmuir 18, 2048-2053 (2002). [CrossRef]
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (John Wiley & Sons, 1983), Chapter 7.
  14. L. Wang, S. L. Jacques, and L. Zheng, �??MCML �?? Monte Carlo modeling of light transport in multi-layered tissue,�?? Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef]
  15. S. Chandrasekhar, �??Stochastic problems in physics and astronomy,�?? Review of Modern Physics 15, 1-89 (1943).
  16. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, �??Determination of complex refractive index of polystyrene microsphere from 370 to 1610 nm,�?? Phys. Med. Biol. 48, 4165-4172 (2003). [CrossRef]
  17. A. N. Winchell, The Optical Properties of Organic Compounds, (Academic Press, 1954), Chapter 4.
  18. H.-J. Moon, K. An, and J.- H. Lee, �??Single spatial mode selection in a layered square microcavity laser,�?? Appl. Phys. Lett. 82, 2963-2965 (2003). [CrossRef]
  19. J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, �??Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,�?? Appl. Opt. 34, 1143-1155 (1995).
  20. L. Kou, D. Labrie, and P. Chylek, �??Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,�?? Appl. Opt. 32, 3513-3540 (1993).
  21. R. Y. Yang, R. P. Zou, and A. B. Yu, �??Computer simulation of the packing of fine particles,�?? Phys. Rev. E 62, 3900-3908 (2000). [CrossRef]
  22. N. V. Brilliantov, F. Spahn, and J. M. Hertzsch, �??Model for collisions in granular gases,�?? Phys. Rev. E 53, 5382-5392 (1996). [CrossRef]
  23. P. A. Thompson and G. S. Grest, �??Granular flow: friction and the dilatancy transition,�?? Phys. Rev. Lett. 67, 1751-1754 (1991). [CrossRef]
  24. L. G. Leal, Laminar Flow and Convective Transport Processes, (Butterworth-Heinemann, 1992), Chapter 4.
  25. F. Podczeck, J. M. Newton, and M. B. James, �??The adhesion force of micronized salmeterol xinafoate particles to pharmaceutically relevant surface materials,�?? J. Phys. D: Appl. Phys. 29, 1878-1884 (1996). [CrossRef]
  26. R. J. Roberts, R. C. Rowe, and P. York, �??The relationship between Young�??s modulus of elasticity of organic solids and their molecular structure,�?? Powder Technol. 65, 139-146 (1991).
  27. Y. Shimada, Y. Yonezawa, H. Sunada, R. Nonaka, K. Katou, and H. Morishita, �??Development of an apparatus for measuring adhesive force between fine particles,�?? KONA No. 20, 223-230 (2002).
  28. K. Z. Y. Yen and T. K. Chaki, �??A dynamic simulation of particle rearrangement in powder packings with realistic interactions,�?? J. Appl. Phys. 71, 3164-3173 (1992). [CrossRef]
  29. L. M. Zurk, L. Tsang, K. H. Ding, and D. P. Winebrenner, �??Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and nonclustered geometrics,�?? J. Opt. Soc. Am A 12, 1772-1781 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (769 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited