OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 10 — May. 16, 2005
  • pp: 3625–3630

Electromagnetic excitation of nano-carbon in vacuum

Shaomin Wang, Laigui Hu, Binzhi Zhang, Daomu Zhao, Zhiyi Wei, and Zhiguo Zhang  »View Author Affiliations


Optics Express, Vol. 13, Issue 10, pp. 3625-3630 (2005)
http://dx.doi.org/10.1364/OPEX.13.003625


View Full Text Article

Enhanced HTML    Acrobat PDF (676 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nano-carbon as lighting source is demonstrated in this paper. The characterized nano-radiation from nano-carbon, excited by different lasers in vacuum, is observed when laser intensity is over a threshold. With lower excitation threshold and smaller white light source, nano-carbon is more applicable to be as lighting system than the others in scientific experiments. White light emission of nano-carbon induced by more practicable electromagnetic excitation (microwave) is also demonstrated, which is caused by the faradic heating of the metal substrates, with molecular spectra and better color rendering. Lighting systems comprised of nano-carbon may become one of the considerable directions in optics.

© 2005 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(350.4010) Other areas of optics : Microwaves
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Research Papers

History
Original Manuscript: March 22, 2005
Revised Manuscript: April 29, 2005
Published: May 16, 2005

Citation
Shaomin Wang, Laigui Hu, Binzhi Zhang, Daomu Zhao, Zhiyi Wei, and Zhiguo Zhang, "Electromagnetic excitation of nano-carbon in vacuum," Opt. Express 13, 3625-3630 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-10-3625


Sort:  Journal  |  Reset  

References

  1. L. T. Canham, �??Sillicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,�?? Appl. Phys. Lett. 57, 1046-1048 (1990). [CrossRef]
  2. R. P. Chin, Y. R. Shen, and V. Petrova- Koch, �??Photoluminescence from porous silicon by infrared multiphoton excitation,�?? Science 270, 776-778 (1995). [CrossRef]
  3. S. Kalem and O. Yavuzcetin, �??Possibility of fabricating light-emitting porous silicon from gas phase etchants,�?? Opt. Express 6, 7-11 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-7.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-7.</a> [CrossRef] [PubMed]
  4. T. Karacali, B. Cakmak, and H. Efeoglu, �??Aging of porous silicon and the origin of blue shift,�?? Opt. Express 11, 1237-1242 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1237.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1237.</a> [CrossRef] [PubMed]
  5. F. Hide, P. Kozodoy, S. P. DenBaars, and A. J. Heeger, �??White light from InGaN/conjugated polymer hybrid light-emitting diodes,�?? Appl. Phys. Lett. 70, 2664-2666 (1997). [CrossRef]
  6. B. Cakmak, �??Fabrication and characterization of dry and wet etched InGaAs/InGaAsP/InP long wavelength semiconductor lasers,�?? Opt. Express 10, 530-535 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-530.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-530.</a> [PubMed]
  7. S. M. Wang, L. G. Hu, Z. D. Lu, D. M. Zhao, T. Z. Peng, Y. W. Zeng, D. R. Yang, Y. Zhao, J. Sha, and J. J. Niu, �??White and bright radiation from nanostructured carbon,�?? Chinese J. Optoelectronics Laser 14(2), 215-220 (2003).
  8. S. M. Wang, Y. H. Shen, J. X. Xu, L. G. Hu, J. Zhu, D. R. Yang, H. Zhang, Y. W. Zeng, and J. Q. Yao, �??Deep-ultraviolet emission from an InGaAs semiconductor laser,�?? Appl. Phys. Lett. 84, 3007-3009 (2004). [CrossRef]
  9. P. Heszler, P. Mogyorósi and J. O. Carlsson, �??Phosphorescence from tungstenclusters during laser-assisted chemical-vapor deposition of tungsten,�?? J. Appl. Phys. 78, 5277-5282 (1995). [CrossRef]
  10. P. Heszler, L. Landström, M. Lindstam, and J. O. Carlsson., �??Light emission from tungsten nanoparticles during laser-assisted chemical vapor deposition of tungsten,�?? J. Appl. Phys. 89, 3967-3970 (2001). [CrossRef]
  11. A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes, and M. L. Simpson, �??Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly,�?? J. Appl. Phys. 97, 041301 (2005). [CrossRef]
  12. A. N. Obraztsov, A. P.Volkov, Al. A. Zakhidov, D. A. Lyashenko, Yu. V. Petrushenko, and O. P. Satanovskaya, �??Field emission characteristics of nanostructured thin film carbon materials,�?? Appl. Surf. Sci. 215, 214-221 (2003). [CrossRef]
  13. M. Vollmer, K. P. Möllmann, and D. Karstädt, �??Microwave oven experiments with metals and light sources,�?? Phys. Educ. 39, 500-508 (2004). [CrossRef]
  14. R. Coisson and E. Rancan, �??Quantitative use of a Crookes radiometer,�?? Phys. Educ. 14, 58-59 (1979). [CrossRef]
  15. W. de Fonvielle, �??The radiometer in France,�?? Nature 14, 296-297 (1876). [CrossRef]
  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Willey, New York, 1983).
  17. H. Chang and T. T. Charalampopoulos, �??Determination of the wavelength dependence of refractive indices of flame soot,�?? Proc. R. Soc. Lond. A 430, 577-591 (1990). [CrossRef]
  18. W. Adrian, �??Spectral sensitivity of the pupillary system,�?? Clin. Exp. Optom. 86, 235-238 (2003). [CrossRef] [PubMed]
  19. J. G. Phillips and S. P. Davis, I. The Swan System of the C2 Molecule. II. The Spectrum of the HgH Molecule (University of California Press, Berkeley and Los Angeles, 1968). [PubMed]
  20. E. A. Rohlfing, �??Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source,�?? J. Chem. Phys. 89, 6103-6112 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited