OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 10 — May. 16, 2005
  • pp: 3690–3696

Pulse energy dependence of subcellular dissection by femtosecond laser pulses

A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber  »View Author Affiliations

Optics Express, Vol. 13, Issue 10, pp. 3690-3696 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 µm away.

© 2005 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(170.0180) Medical optics and biotechnology : Microscopy
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Research Papers

Original Manuscript: February 28, 2005
Revised Manuscript: May 1, 2005
Published: May 16, 2005

A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, "Pulse energy dependence of subcellular dissection by femtosecond laser pulses," Opt. Express 13, 3690-3696 (2005)

Sort:  Journal  |  Reset  


  1. W. Denk, J.H. Strickler, and W.W. Webb, �??Two-Photon Laser Scanning Fluorescence Microscopy,�?? Science 248, 4951, 73-76 (1990) [CrossRef] [PubMed]
  2. K. Koenig, �??Multiphoton Microscopy in Life Sciences,�?? J. Microscopy 200, 83-104 (2000) [CrossRef]
  3. D. Stern, R.W. Schoenlein, C.A. Puliafito, E.T. Dobi, R. Birngruber, and J.G. Fujimoto, �??Ablation by Nanosecond, Picosecond, and Femtosecond Lasers at 532 nm and 625 nm,�?? Arch. Ophthalmol. 107, 587-592 (1989) [CrossRef] [PubMed]
  4. P.T.C. So, H. Kim, and I.E. Kochevar, �??Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures,�?? Opt. Express 3, 339-350 (1998), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-9-339">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-9-339<a/> [CrossRef] [PubMed]
  5. N. Shen, C.B. Schaffer, D. Datta, and E. Mazur, �??Photodisruption in biological tissues and single cells using femtosecond laser pulses,�?? in Lasers and Electro Optics, conference technical digest, OSA, Washington, DC, 56, 403-404 (2001)
  6. K. Koenig, I. Riemann, P. Fischer, and K. Halbhuber, �??Intracellular Nanosurgery With Near Infrared Femtosecond Laser Pulses,�?? Cell. Mol. Biol. 45, 192-201 (1999)
  7. U.K. Tirlapur, and K. Koenig, �??Targeted transfection by femtosecond laser,�?? Nature 448, 290-291 (2002) [CrossRef]
  8. W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, �??Femtosecond laser disruption of subcellular organelles in a living cell,�?? Opt. Express 12, 18, 4203-4213 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4203"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4203<a/> [CrossRef] [PubMed]
  9. A. Vogel, and V. Venugopalan, �??Mechanisms of Pulsed Laser Ablation of Biological Tissues,�?? Chem. Rev. 103, 2, 577-644 (2003) [CrossRef] [PubMed]
  10. M.W. Berns, J. Aist, J. Edwards, K. Strahs, J. Girton, P. McNeil, J.B. Rattner, M. Kitzes, M. Hammerwilson, L.H. Liaw, A. Siemens, M. Koonce, S. Peterson, S. Brenner, J. Burt, R. Walter, P. J. Bryant, D. Vandyk, J. Couclombe, T. Cahill, and G.S. Bern, �??Laser microsurgery in cell and developmental biology,�?? Science 213, 505-513 (1981) [CrossRef] [PubMed]
  11. H. Liang, W.H. Wright, S. Cheng, W. He, and M.W. Berns, �??Micromanipulation of Chromosomes in PTK2 Cells Using Laser Microsurgery (Optical Scalpel) in Combination with Laser-Induced Optical Force (Optical Tweezers), �?? Experimental Cell Research 204, 110-120 (1993) [CrossRef] [PubMed]
  12. J.R. Aist, H. Liang, and M.W. Berns, �??Astral and spindle forces in PtK2 cells during anaphase B: a laser microbeam study,�?? Journal of Cell Science 104, 1207-1216 (1993) [PubMed]
  13. S.W. Grill, J. Howard, E. Schäffer, E.H.K. Stelzer, and A.A. Hyman, �??The Distribution of Active Force Generators Controls Mitotic Spindle Position,�?? Science 301, 518-521 (2003) [CrossRef] [PubMed]
  14. J. Noack, D.X. Hammer, G.D. Noojin, B.A. Rockwell, and A. Vogel, �??Influence of pulse duration on mechanical effects after laser-induced breakdown in water,�?? J. Appl. Phys. 83, 12, 7488-7495 (1998) [CrossRef]
  15. C.B. Schaffer, J.F. Garcia, and E. Mazur, �??Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,�?? Appl. Phys. A 76, 351-354 (2003) [CrossRef]
  16. E.L.Botvinick, V.Venugopalan, J.V.Shah, L.H.Liaw, and M.W. Berns, �??Controlled Ablation of Microtubules Using a Picosecond Laser,�?? Biophys. J. 87, 6, 4203-4212 (2004) [CrossRef] [PubMed]
  17. M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y. Jin, and A. Ben-Yakar, �??Neurosurgery: Functional regeneration after laser axotomy,�?? Nature 432, 822 (2004) [CrossRef] [PubMed]
  18. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber, �??Geometric Control of Cell Life and Death,�?? Science 276, 1425-1427 (1997) [CrossRef] [PubMed]
  19. Y. Numaguchi, S. Huang, T.R. Polte, G.S. Eichler, N. Wang, and D.E. Ingber, �??Caldesmon-dependent switching between capillary endothelial cell growth and apoptosis through modulation of cell shape and contractility,�?? Angiogenesis. 6, 55-64 (2003) [CrossRef] [PubMed]
  20. S.H. Hu, J.X. Chen, and N. Wang, �??Cell spreading controls balance of prestress by microtubules and extracellular matrix,�?? Front. Biosci. 9, 2177-2182 (2004) [CrossRef] [PubMed]
  21. F.J. Alenghat, S.M. Nauli, R. Kolb, J. Zhou, and D.E. Ingber, �??Global cytoskeletal control of mechanotransduction in kidney epithelial cells,�?? Exp. Cell Res. 301, 23-30 (2004) [CrossRef] [PubMed]
  22. V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, �??Role of Laser-Induced Plasma Formation in Pulsed Cellular Microsurgery and Micromanipulation,�?? Phys. Rev. Lett. 88, 078103, 1-4 (2002) [CrossRef]
  23. D. Gusnard, and R. H. Kirschner, �??Cell and organelle shrinkage during preparation for scanning electron microscopy: Effects of fixation, dehydration and critical point drying,�?? J. Microscopy 110, 1, 51-57 (1977) [CrossRef]
  24. U. Brunk, V.P. Collins, and E. Arro, �??The fixation, dehydration, drying and coating of cultured cells of SEM,�?? J. Microscopy 123, 2, 121-131 (1981) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited