OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 10 — May. 16, 2005
  • pp: 3707–3718

Computation of the optical trapping force using an FDTD based technique

Robert C. Gauthier  »View Author Affiliations

Optics Express, Vol. 13, Issue 10, pp. 3707-3718 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (263 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The computation details related to computing the optical radiation pressure force on various objects using a 2-D grid FDTD algorithm are presented. The technique is based on propagating the electric and magnetic fields through the grid and determining the changes in the optical energy flow with and without the trap object(s) in the system. Traces displayed indicate that the optical forces and FDTD predicted object behavior are in agreement with published experiments and also determined through other computation techniques. We show computation results for a high and low dielectric disc and thin walled shell. The FDTD technique for computing the light-particle force interaction may be employed in all regimes relating particle dimensions to source wavelength. The algorithm presented here can be easily extended to 3-D and include torque computation algorithms, thus providing a highly flexible and universally useable computation engine.

© 2005 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.7010) Lasers and laser optics : Laser trapping

ToC Category:
Research Papers

Original Manuscript: April 6, 2005
Revised Manuscript: May 2, 2005
Published: May 16, 2005

Robert Gauthier, "Computation of the optical trapping force using an FDTD based technique," Opt. Express 13, 3707-3718 (2005)

Sort:  Journal  |  Reset  


  1. A. Ashkin, �??Acceleration and trapping of particles by radiation pressure,�?? Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  3. P. Galajda and Pal Ormos, �??Orientation of flat particles in optical tweezers by linearly polarized light,�?? Opt. Express 11, 446-451 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-446">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-446</a> [CrossRef] [PubMed]
  4. S. J. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical measurement of torque exerted on an elongated object by a noncircular laser beam,�?? Phys. Rev A 70, 023816 (2004). [CrossRef]
  5. R. C. Gauthier, R. N. Tait, M. Ubriaco, �??Activation of microcomponents with light for micro-electro-mechanical systems and micro-optical-electro-mechanical systems applications,�?? Opt. Lett. 41, 2361-2367 (2002).
  6. E. Higurashi, H. Ukita, H. Tanaka and O. Ohguchi, �??Optically indiced rotation of anisotropic micro-objects fabricated by surface micromachining,�?? Appl. Phys. Lett. 64, 2209-2210 (1994). [CrossRef]
  7. R. W. Applegate Jr., J. Squier, T. Vestad, J. Oakey and D. W. M. Marr, �??Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,�?? Opt. Express 12, 4390-4398 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4390">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4390</a> [CrossRef] [PubMed]
  8. M. Goksor, J. Enger and D. Hanstrop, �??Optical manipulation in combination with multiphoton microscopy for single-cell studies,�?? Appl. Opt. 43, 4831-4837 (2004). [CrossRef] [PubMed]
  9. F. Qian, S. Ermilov, D. Murdock, W. E. Brownell and B. Anvari, �??Combining optical tweezers and patch clamp for studies of cell membrane electromechanics,�?? Rev. Sci. Inst. 75, 2937-2942 (2004). [CrossRef]
  10. K. F. Ren, G. Grehan and G. Gouesbet, �??Prediction of reverse radiation pressure by generalized Lorentz-Mie theory,�?? Appl. Opt. 35, 2702-2710 (1996). [CrossRef] [PubMed]
  11. J. Lock, �??Calculation of the radiation trapping force for laser tweezers by use of generalized Lorentz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberrations,�?? Appl. Opt. 43, 2532-2544 (2004). [CrossRef] [PubMed]
  12. D. Ganic, X. Gan and M. Gu, �??Exact radiation trapping force calculation based on vectorial diffraction theory,�?? Opt. Express 12, 2670-2675 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2670">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2670</a> [CrossRef] [PubMed]
  13. R. Goussgard and T. Lindmo, �??Calculation of the trapping force in a strongly focused laser beam,�?? J. Opt. Soc. Am B 9, 1922-1930 (1992). [CrossRef]
  14. A. Ashkin, �??Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,�?? J. Biophys. 61, 569-582 (1992). [CrossRef]
  15. R. C. Gauthier and A. Frangioudakis, �??Theoretical investigation of the optical trapping properties of a micro-optic cube glass structure,�?? Appl. Opt. 39, 3060-3070 (2000). [CrossRef]
  16. R. C. Gauthier, �??Optical levitation and trapping of a micro-optic inclined end-surface cylindrical spinner,�?? Appl. Opt. 40, 1961-1973 (2001). [CrossRef]
  17. R. C. Gauthier, M. Friesen, T. Gerrard, W. Hassouneh, P. Koziorowski, D. Moore, K. Oprea and S. Uttamalingam, �??Self-centering of a ball lens by laser trapping: fiber-to-fiber coupling analysis,�?? Appl. Opt. 42, 1610-1619 (2002). [CrossRef]
  18. K. S. Yee, �??Numerical solution of initial boundary value problems involving Maxwell�??s equations in isotropic media,�?? IEEE Trans. Antennas and Propagat. 14, 302-307 (1966). [CrossRef]
  19. J.-P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  20. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain, Boston: Artech House, 1995.
  21. W. L. Collett, C. A. Ventrice and S. M. Mahajan, �??Electromagnetic wave technique to determine radiation torque on micromachines driven by light,�?? Appl. Phys. Lett. 82, 2730-2732 (2003). [CrossRef]
  22. D. Zhang, X.-C. Yuan, S. C. Tjin and S. Krishnan, �??Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping,�?? Opt. Express 12, 2220-2230 (2004). [CrossRef] [PubMed]
  23. R. C. Gauthier and M. Ashman, �??Simulated dynamic behavior of single and multiple spheres in a trap region of focused laser beams,�?? Appl. Opt. 37, 6421-6431 (1998). [CrossRef]
  24. D. Sullivan, Electromagnetic simulation using the FDTD method, IEEE Press Series on RF and Microwave Technology, New York, 2000.
  25. K. Visscher and G. J. Brakenhoff, �??Theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers,�?? Optik 89, 174-180 (1992).
  26. K. Visscher and G. J. Brakenhoff, �??Theoretical study of optically induced forces on spherical particles in a single beam trap II: Mie scatterers,�?? Optik 90, 57-60 (1992).
  27. S. Nemoto and H. Togo, �??Axial force acting on a dielectric sphere in a focus laser beam,�?? Appl. Opt. 37, 6386-6394 (1998). [CrossRef]
  28. R. C. Gauthier, �??Laser-trapping properties of dual component spheres,�?? Appl. Opt. 41, 7135-7144 (2002). [CrossRef] [PubMed]
  29. G. Roosen, �??A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,�?? Opt. Commun. 21, 189-194 (1977). [CrossRef]
  30. A. Constable, J. K. Kim, J. Mervis, F. Zarinetchi and M. Prentiss, �??Demonstration of a fiber-optic light-force trap,�?? Opt. Lett. 18, 1867-1869 (1993). [CrossRef] [PubMed]
  31. E. Sidick, S. D. Collins and A. Knoesen, �??Trapping forces in a multiple-beam fiber- optic trap,�?? Opt. Lett. 36, 6423-6433 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited