OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 10 — May. 16, 2005
  • pp: 3719–3727

Analysis of mode stability in a concave mirror vertical-cavity surface-emitting laser with an oxide aperture

Young-Gu Ju  »View Author Affiliations

Optics Express, Vol. 13, Issue 10, pp. 3719-3727 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We applied the Fox-Li resonator theory to analyze the mode stability of concave mirror surface-emitting lasers. The numerical modeling incorporates the oxide aperture in the simple classical cavity by adding a non-uniform phase shifting layer to the flat mirror side. The calculation shows that there is a modal loss difference between the fundamental mode and the competing modes. The amount of loss difference depends upon cavity length and the thickness of the oxide aperture. In addition to loss difference, modal gain difference plays a key role in discriminating between the fundamental mode and the higher order transverse modes. The modal gain difference heavily depends upon the size of the oxide aperture and the field intensity distribution. To summarize, the geometry of the concave cavity affects the mode profile and the unique field profile of each transverse mode makes a difference in both modal loss and gain. Finally, this leads to a side-mode suppression.

© 2005 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Research Papers

Original Manuscript: April 8, 2005
Revised Manuscript: May 2, 2005
Published: May 16, 2005

Young-Gu Ju, "Analysis of mode stability in a concave mirror vertical-cavity surface-emitting laser with an oxide aperture," Opt. Express 13, 3719-3727 (2005)

Sort:  Journal  |  Reset  


  1. H. Martinsson, J. A. Vukusic, and A. Larsson, �??Single-mode power dependence on surface relief size for mode-stabilized oxide-confined vertical-cavity surface-emitting lasers,�?? IEEE Photon. Technol. Lett. 12, 1129-1131 (2000). [CrossRef]
  2. E. W. Young, K. D. Choquette, S. L. Chuan, K. M. Geib, A. J. Fischer, and A. A. Allerman, �??Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,�?? IEEE Photon. Technol. Lett. 13, 927-929 (2001) [CrossRef]
  3. Jong-Hwa Baek, Dae-Sung Song, In-Kag Hwang, Kum-Hee Lee, and Y. H. Lee, Young-gu Ju, Takashi Kondo, Tomoyuki Miyamoto, and Fumio Koyama, "Transverse mode control by etch-depth tuning in 1120-nm GaInAs/GaAs photonic crystal vertical-cavity surface-emitting lasers," Opt. Express 12, 859-867 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-859">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-859</a> [CrossRef] [PubMed]
  4. L.A. Coldren, S.P. DenBaars, O. Buchinsky, T. Margalith, D.A. Cohen, A.C. Abare, and M. Hansen, �??Blue and Green InGaN VCSEL Technology,�?? Final Report 1997-98 for MICRO Project 97-033 (1997) , <a href="http://www.ucop.edu/research/micro/97_98/97_033.pdf">http://www.ucop.edu/research/micro/97_98/97_033.pdf</a>
  5. Si-Hyun Park, Jaehoon Kim, Heonsu Jeon, Tan Sakong, Sung-Nam Lee, Suhee Chae, Y. Park, Chang-Hyun Jeong and Geun-Young Yeom, and Yong-Hoon Cho, �??Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,�?? Appl. Phys. Lett., 83, 2121-2121 (2003) [CrossRef]
  6. K. S. Kim, Y. H. Lee, B. Y. Jung and C. K. Hwangbo, �??Single mode operation of a curved-mirror vertical-emitting laser with an active distributed Bragg reflector,�?? Jpn. J. Appl. Phys. 41, L827-L829 (2002) [CrossRef]
  7. P. Brick, S. Lutgen, T. Albrecht, J. Luft, W. Spath, �??High-efficiency high-power semiconductor disc laser,�?? Proc. SPIE 4993, 50-56 (2003) [CrossRef]
  8. E. M. Strzelecka, J. G. McInerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, Wats, �??High-power high-brightness 980-nm lasers based on the extended cavity surface emitting lasers concept,�?? Proc. SPIE 4993, 57-67 (2003) [CrossRef]
  9. S. H. Park, Y. Park, and H. Jeon, �??Theory of the mode stabilization mechanism in concave-micromirror-capped vertical-cavity surface-emitting lasers,�?? J. of Appl. Phys. 94, 1312-1317 (2003) [CrossRef]
  10. A. E. Siegman, Laser, (Oxford University Press, 1986), Chap. 14
  11. A. G. Fox and T. Li, �??Computation of optical resonator modes by the method of resonance excitation,�?? IEEE J. of Quantum Electron. QE-4, 460-465 (1968) [CrossRef]
  12. Young-Gu Ju, "Evaluation scheme for the design of power-optimized single mode vertical-cavity surface-emitting lasers," Opt. Express 12, 2542-2547 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2542">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2542</a> [CrossRef] [PubMed]
  13. Y. G. Ju, J. H. Ser, and Y. H. Lee, "Analysis of metal-interlaced-grating vertical-cavity surface-emitting lasers using the modal method by modal expansion," IEEE J. of Quantum Electron. 33, 589-595 (1997) [CrossRef]
  14. S. Corzine, Ph.D. dissertation, University of California at Santa Barbara, ch. 4. (1993)
  15. S. A. Riyopoulos, D. Dialetis, J. Liu, and B. Riely, "Generic Representation of Active Cavity VCSEL Eigenmodes by Optimized Waist Gauss-Laguerre Modes,�?? IEEE J. Sel. Top. Quantum Electron. 7, 312-27 (2001) [CrossRef]
  16. E. R. Hegblom, �??Engineering oxide apertures in vertical cavity lasers,�?? Ph.D dissertation, University of California at Santa Barbara, ch. 4. (1999).
  17. A. Mooradian, �??Coupled cavity high power semiconductor laser,�?? United States patent 6778582, (2004)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited