OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 10 — May. 16, 2005
  • pp: 3743–3753

Phase extraction from three and more interferograms registered with different unknown wavefront tilts

Oleg Soloviev and Gleb Vdovin  »View Author Affiliations


Optics Express, Vol. 13, Issue 10, pp. 3743-3753 (2005)
http://dx.doi.org/10.1364/OPEX.13.003743


View Full Text Article

Enhanced HTML    Acrobat PDF (1939 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose phase retrieval from three or more interferograms corresponding to different tilts of an object wavefront. The algorithm uses the information contained in the interferogram differences to reduce the problem to phase shifting. Three interferograms is the minimum for restoring the phase over most of the image. Four or more interferograms are needed to restore the phase over the whole image. The method works with images including open and closed fringes in any combination.

© 2005 Optical Society of America

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Research Papers

History
Original Manuscript: April 12, 2005
Revised Manuscript: May 4, 2005
Published: May 16, 2005

Citation
Oleg Soloviev and Gleb Vdovin, "Phase extraction from three and more interferograms registered with different unknown wavefront tilts," Opt. Express 13, 3743-3753 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-10-3743


Sort:  Journal  |  Reset  

References

  1. D. Malacara, M. Servín, and Z. Malacara, Interferogram analysis for optical shop testing (Marcel Dekker, Inc., New York, Basel, Hong Kong, 1998).
  2. Y. Surrel, �??Fringe analysis,�?? in Photomechanics, P. K. Rastogi, ed. (Springer, 1999).
  3. Y. Surrel, �??Design of algorithms for phase measurements by the use of phase stepping,�?? Appl. Opt. 35(1), 51 �??60 (1996). [CrossRef]
  4. D. Malacara, ed., Optical Shop Testing, 2nd ed. (John Wiley & Sons, Inc., 1992).
  5. G. Lai and T. Yatagai, �??Generalized phase-shifting interferometry,�?? J. Opt. Soc. Am. A 8(5), 822�??827 (1991). [CrossRef]
  6. K. Okada, A. Sato, and J. Tujiuchi, �??Simultaneous calculation of phase distribution and scanning phase shift in phase shifting interferometry,�?? Opt. Commun. 84(3,4), 118�??124 (1991). [CrossRef]
  7. I.-B. Kong and S.-W. Kim, �??General algorithm of phase-shifting interferometry by iterative least-squares fitting,�?? Opt. Eng. 34, 183�??187 (1995). [CrossRef]
  8. M. Chen, H. Guo, and C.Wei, �??Algorithm immune to tilt phase-shifting error for phase-shifting interferometers,�?? Appl. Opt. 39(22), 3894�??3898 (2000). [CrossRef]
  9. A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, �??Tilt-compensating algorithm for phase-shift interferometry,�?? Appl. Opt. 41(13), 2435�??2439 (2002). [CrossRef]
  10. T. Kreis, �??Digital holographic interference-phase measurement using the Fourier-transform method,�?? J. Opt. Soc. Am. A 3(6), 847�??855 (1986). [CrossRef]
  11. J. A. Quiroga, J. A. Gómez-Pedrero, and �?. García-Botella, �??Algorithm for fringe pattern normalisation,�?? Opt. Commun. 197, 43�??51 (2001). [CrossRef]
  12. C. Roddier and F. Roddier, �??Interferogram Analysis Using Fourier Transform Techniques,�?? Appl. Opt. 26, 1668�??1673 (1987). [CrossRef] [PubMed]
  13. Z. Ge, F. Kobayashi, S. Matsuda, and M. Takeda, �??Coordinate-transform technique for closed-fringe analysis by the Fourier-transform method,�?? Appl. Opt. 40(10), 1649�??1657 (2001). [CrossRef]
  14. K. A. Goldberg and J. Bokor, �??Fourier-transform method of phase-shift determination,�?? Appl. Opt. 40(17), 2886�??2893 (2001). [CrossRef]
  15. F. Cuevas, J. Sossa-Azuela, and M. Servin, �??A parametric method applied to phase recovery from a fringe pattern based on a genetic algorithm,�?? Opt. Commun. 203, 213�??223 (2002). [CrossRef]
  16. M. Servin, J. A. Quiroga, and J. L. Marroquin, �??General n-dimensional quadrature transform and its application to interferogram demodulation,�?? J. Opt. Soc. Am. A 20(5), 925�??934 (2003). [CrossRef]
  17. E. Yu and S. S. Cha, �??Two-dimensional regression for interferometric phase extraction,�?? Appl. Opt. 37(8), 1370�??1376 (1998). [CrossRef]
  18. G. X. Ritter and J. N.Wilson, Handbook of computer vision algoritm in image algebra (CRC Press, Boca Raton, New York, London, Tokyo, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited