OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 10 — May. 16, 2005
  • pp: 3754–3764

Optical sensor based on resonant porous silicon structures

Jarkko J. Saarinen, Sharon M. Weiss, Philippe M. Fauchet, and J. E. Sipe  »View Author Affiliations

Optics Express, Vol. 13, Issue 10, pp. 3754-3764 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new design for an optical sensor based on porous silicon structures. We present an analysis based on a pole expansion, which allows for the easy identification of the parameters important for the operation of the sensor, and the phenomenological inclusion of scattering losses. The predicted sensitivity of the sensor is much greater than detectors utilizing surface plasmon resonance.

© 2005 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Research Papers

Original Manuscript: March 3, 2005
Revised Manuscript: May 3, 2005
Published: May 16, 2005

Jarkko Saarinen, Sharon Weiss, Philippe Fauchet, and J. E. Sipe, "Optical sensor based on resonant porous silicon structures," Opt. Express 13, 3754-3764 (2005)

Sort:  Journal  |  Reset  


  1. J. Räty, K.-E. Peiponen, and T. Asakura, UV-visible reflection spectroscopy of liquids (Springer, Heidelberg, 2004).
  2. H. Räther, Surface plasmons on smooth and rough surfaces and on gratings (Springer, Berlin, 1988).
  3. E. Kretschmann, �??Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results.,�?? Opt. Comm. 6, 185�??187 (1972). [CrossRef]
  4. I. Pockrand, �??Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,�?? Surf. Sci. 72, 577�??588 (1978). [CrossRef]
  5. J. D. Swalen, �??Optical wave spectroscopy of molecules at surfaces,�?? J. Phys. Chem. 83, 1438�??1445 (1979). [CrossRef]
  6. H. Kano and S. Kawata, �??Surface-plasmon sensor for absorption-sensitivity enhancement,�?? Appl. Opt. 33, 5166�??5170 (1994). [CrossRef] [PubMed]
  7. J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, �??Simulation on wavelength-dependent complex refractive index of liquids obtained by phase retrieval from reflectance dip due to surface plasmon resonance,�?? Appl. Spectrosc. 57, 288�??292 (2003). [CrossRef] [PubMed]
  8. R. J. Green, R. A. Frazier, K. M. Skakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, �??Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,�?? Biomaterials 21, 1823�??1835 (2000). [CrossRef] [PubMed]
  9. B. J. Sedlak, �??Next-generation microarray technologies - Focus is on higher sensitivity, drug discovery, and lipid cell signaling,�?? Genetic Engineering News 23, 20�??20 (2003).
  10. P. M. Fauchet, �??Silicon: Porous,�?? in Encyclopedia of applied physics, update 2, G. L. Trigg, ed. (Wiley-VCH Verlag, New York, 1999), pp. 249�??272.
  11. S. M. Weiss and P. M. Fauchet, �??Electrically tunable porous silicon active mirrors,�?? Phys. Stat. Sol. A 197, 556�??560 (2003). [CrossRef]
  12. J. E. Lugo, J. A. del Rio, and J. Tagüeña-Martínez, �??Influence of surface coverage on the effective optical properties of porous silicon modeled as a Si-wire array,�?? J. Appl. Phys. 81, 1923�??1928 (1997). [CrossRef]
  13. P. E. Schmid, �??Optical absorption in heavily doped silicon,�?? Phys. Rev. B. 23, 5531�??5536 (1981). [CrossRef]
  14. J. von Behren, L. Tsybeskov, and P. M. Fauchet, �??Preparation, properties and applications of free-standing porous silicon films,�?? in Microcrystalline and nanocrystalline semiconductors, Vol. 358, R. W. Collins, C. C. Tsai, M. Hirose, F. Koch, and L. Brus, eds. (Mat. Res. Proc., 1995), pp. 333�??338.
  15. J. E. Sipe, �??New Green-function formalism for surface optics,�?? J. Opt. Soc. Am. B 4, 481�??489 (1987). [CrossRef]
  16. J. E. Sipe, �??Surface plasmon-enhanced absorption of light by adsorbed molecules,�?? Solid State Commun. 33, 7�??9 (1980). [CrossRef]
  17. J. E. Sipe and J. Becher, �??Surface energy transfer enhanced by optical cavity excitation: a pole analysis,�?? J. Opt. Soc. Am. 72, 288�??295 (1982). [CrossRef]
  18. E. D. Palik, Handbook of optical constants of solids (Academic Press, New York, 1985).
  19. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988).
  20. G. Amato, L. Boarino, S. Borini, and A. M. Rossi, �??Hybrid approach to porous silicon integrated waveguides,�?? Phys. Stat. Sol. (a) 182, 425�??430 (2000). [CrossRef]
  21. For an overlayer thickness l with an index nl the effective Fresnel coefficient �?r51 from the prism in Fig. 1a is exactly given by Eq. (9) but with r31 replaced by �?r31 = (r3l+rl1 exp(2iwll))/(1-rl3rl1 exp(2iwll)) in an obvious notation. Using Fresnel coefficient identities, that new equation can be written as �?r31 = (r31 + �?r1l)/(1+r31 �?r1l), where �?r1l = (r1l +rl1 exp(2iwll))/(1-r2 l1 exp(2iwll)). Using the pole approximation (11) for r31 in this new expression for �?r51, we predict a shift of the resonance dip due to the overlayer which deviates from an exact calculation of that shift by only 0.002.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited