OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 10 — May. 16, 2005
  • pp: 3777–3786

3D interferometric optical tweezers using a single spatial light modulator

Ethan Schonbrun, Rafael Piestun, Pamela Jordan, Jon Cooper, Kurt D Wulff, Johannes Courtial, and Miles Padgett  »View Author Affiliations

Optics Express, Vol. 13, Issue 10, pp. 3777-3786 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hexagonal arrays of micron sized silica beads have been trapped in three-dimensions within an optical lattice formed by the interference of multiple plane-waves. The optical lattice design with sharply peaked intensity gradients produces a stronger trapping force than the traditionally sinusoidal intensity distributions of other interferometric systems. The plane waves were generated using a single, phase-only, spatial light modulator (SLM), sited near a Talbot image plane of the traps. Compared to conventional optical tweezers, where the traps are formed in the Fourier-plane of the SLM, this approach may offer an advantage in the creation of large periodic array structures. This method of pattern formation may also be applicable to trapping arrays of atoms.

© 2005 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(090.1760) Holography : Computer holography
(090.2880) Holography : Holographic interferometry
(110.6760) Imaging systems : Talbot and self-imaging effects
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.6120) Optical devices : Spatial light modulators
(260.3160) Physical optics : Interference

ToC Category:
Research Papers

Original Manuscript: March 24, 2005
Revised Manuscript: May 4, 2005
Published: May 16, 2005

Ethan Schonbrun, Rafael Piestun, Pamela Jordan, Jon Cooper, Kurt Wulff, Johannes Courtial, and Miles Padgett, "3D interferometric optical tweezers using a single spatial light modulator," Opt. Express 13, 3777-3786 (2005)

Sort:  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkman and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. M. M. Burns, J. M. Fournier, and J.A. Golovchenko, �??Optical matter: crystallization and binding in intense optical fields," Science, 249, 749-754 (1990). [CrossRef] [PubMed]
  3. A. E. Chiou, W. Wang., G.J. Sonek, J. Hong, and M. W. Berns, �??Interferometric optical tweezers,�?? Optics Commun., 133, 7-10 (1997). [CrossRef]
  4. P. Zemanek, A. Jonas, P. Jakl, J. Jezek, M. Sery, and M. Liska, "Theoretical comparison of optical traps created by standing wave and single beam," Opt Commun 220, 401-412 (2003). [CrossRef]
  5. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Phys Rev A, 54, 1593-1596 (1996). [CrossRef]
  6. N. B. Simpson, L. Allen and M. J. Padgett, " Optical tweezers and optical spanners with Laguerre-Gaussian modes," J Mod Opt, 43, 2485-2491 (1996). [CrossRef]
  7. D. G. Grier, "A revolution in optical manipulation," Nature, 424, 810-816 (2003). [CrossRef] [PubMed]
  8. K. C. Neuman, S. M. Block, "Optical trapping" Review of Scientific Instruments, 75, 2787-2809 (2004). [CrossRef]
  9. M. Reicherter, T. Haist, E. U. Wagemann and H. J. Tiziani, "Optical particle trapping with computer generated holograms written on a liquid crystal display," Opt. Lett. 24, 608-610 (1999). [CrossRef]
  10. J. E. Curtis, B. A. Koss and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002). [CrossRef]
  11. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001). [CrossRef]
  12. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett and J. Cooper, "Defining the trapping limits of holographic optical tweezers," J. Mod. Opt. 51, 409-414 (2004). [CrossRef]
  13. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper and Z. J. Laczik, "Assembly of 3-dimensional structures using programmable holographic optical tweezers," Opt. Express 12, 5475 (2004). <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475.</a> [CrossRef] [PubMed]
  14. R. Piestun and J. Shamir, "Control of wave-front propagation with diffractive elements," Opt. Lett. 19, 771-773 (1994). [CrossRef] [PubMed]
  15. R. L. Eriksen, V. R. Daria, and J. Gluckstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10, 597-602 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597</a> [PubMed]
  16. P.J. Rodrigo,V.R. Daria, J. Gluckstad, "Real-time three-dimensional optical micromanipulation of multiple particles and living cells," Opt Lett 29, 2270-2272 (2004). [CrossRef] [PubMed]
  17. A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte, "Diffractive optical tweezers in the Fresnel regime," Opt. Express 12, 2243-2250 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2243">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2243.</a> [CrossRef] [PubMed]
  18. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001). [CrossRef] [PubMed]
  19. R. Newell, J. Sebby, and T. G. Walker, "Dense atom clouds in a holographic atom trap," Opt. Let. 28, 14, 1266-1268 (2003). [CrossRef]
  20. M. P. MacDonald, G. C. Spalding, K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421- 424 (2003). [CrossRef] [PubMed]
  21. P. T. Korda, M. B. Taylor, D. G. Grier, "Kinetically locked-in colloidal transport in an array of optical tweezers," Phys. Rev. Lett., 89, 128301 (2002). [CrossRef] [PubMed]
  22. H. F. Talbot, Philos. Mag., 9, 401-407 (1836).
  23. K. Patorski, The self-imaging phenomenon and its applications, Progress In Optics XXVII, 1-108 (1989). [CrossRef]
  24. R. Piestun and J. Shamir, "Generalized propagation invariant wave-fields," JOSA A., 15, 3039-3034 (1998). [CrossRef]
  25. 26. M. V. Berry and S. Klein, "Integer, fractional and fractal Talbot effects," J. Mod. Opt., 43, 10, 2139-2164 (1996). [CrossRef]
  26. J. Leach, M. Dennis, J. Courtial, and M. Padgett, "Vortex knots in light," New J. Phys. 7, 55.1-55.11 (2005). [CrossRef]
  27. H. He, N. R. Heckenberg and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams using high efficiency computer generated holograms," J. Mod. Opt, 42(1), 217-223 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited