OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 10 — May. 16, 2005
  • pp: 3802–3815

Characterization of photonic crystal microcavities with manufacture imperfections

José M. Rico-García, José M. López-Alonso, and Javier Alda  »View Author Affiliations

Optics Express, Vol. 13, Issue 10, pp. 3802-3815 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1749 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The manufacture of a photonic crystal always produce deviations from the ideal case. In this paper we present a detailed analysis of the influence of the manufacture errors in the resulting electric field distribution of a photonic crystal microcavity. The electromagnetic field has been obtained from a FDTD algorithm. The results are studied by using the Principal Component Analysis method. This approach quantifies the influence of the error in the preservation of the spatial-temporal structure of electromagnetic modes of the ideal microcavity. The results show that the spatial structure of the excited mode is well preserved within the range of imperfection analyzed in the paper. The deviation from the ideal case has been described and quantitatively estimated.

© 2005 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(230.3990) Optical devices : Micro-optical devices
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Research Papers

Original Manuscript: April 7, 2005
Revised Manuscript: May 5, 2005
Published: May 16, 2005

José Rico-García, José López-Alonso, and Javier Alda, "Characterization of photonic crystal microcavities with manufacture imperfections," Opt. Express 13, 3802-3815 (2005)

Sort:  Journal  |  Reset  


  1. G. Guida, T. Brillat, A. Amouche, F. Gadot, A. De Lustrac, A. Priou �??Dissociating the effect of different disturbances on the band gap of a two dimensional photonic crystal,�?? J. App. Phys. 88, 4491-4497 (2000). [CrossRef]
  2. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, J. Lgsgaard �??Small-core photonic crystal fibers with weakly disordered air-hole claddings,�?? J. Opt. A Pure Appl. Opt. 6, 221-223 (2004). [CrossRef]
  3. M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, C. Soukoulis. �??Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals,�?? Phys. Rev. B, 64, 195113-7 (2001). [CrossRef]
  4. G.Guida, �??Numerical studies of disordered photonic crystals,�?? Progress in Electromagnetic Research (PIER), 41, 107-131, (2003). [CrossRef]
  5. W. R. Frei, H. T. Johnson �??Finite-element analysis of disorder effects in photonic crystals,�?? Phys. Rev. B, 70, 165116-11 (2004). [CrossRef]
  6. D. F. Morrison, Multivariate Statistical Methods, 3rd ed. (McGraw-Hill, Singapore, 1990) Chap. 8.
  7. J. M. López-Alonso, J. Alda, E. Bernabéu, �??Principal component characterization of noise for infrared images,�?? Appl. Opt. 41, 320-331 (2002). [CrossRef] [PubMed]
  8. J. M. López-Alonso, J. M. Rico-García, J. Alda, �??Photonic crystal characterization by FDTD and principal component analysis,�?? Opt. Express, 12, 2176-2186 (2004). [CrossRef] [PubMed]
  9. S. Guo, S. Albin �??Numerical Techniques for excitation and analysis of defect modes in photonic crystals,�?? Opt. Express, 11, 1080-1089 (2003). [CrossRef] [PubMed]
  10. J. M. López-Alonso, J. M. Rico-García, J. Alda, �??Numerical artifacts in finite-difference time-domain algorithms analyzed by means of Principal Components,�?? IEEE Trans. Antennas and Propagation (in press) (2005).
  11. M. Skorobogatiy, G. Bégin, A. Talneau, �??Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,�?? Opt. Express, 13, 2487-2502 (2005). [CrossRef] [PubMed]
  12. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos �??Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,�?? Phys. Rev. B, 54, 7837-7842 (1996). [CrossRef]
  13. M. Qiu, S. He �??Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions,�?? Phys. Rev. B, 61, 12871-12876 (2000). [CrossRef]
  14. A. Taflove, S. Hagness, Computacional Electrodynamics: The Finite-Difference Time Domain Method , 2nd edition, Artech House (2000).
  15. R. Schuhmann, T. Weiland, �??The Nonorthogonal Finite Integration Technique Applied to 2D- and 3D-Eigenvalue Problems,�?? IEEE Trans. on Magnetics, 36, 897-901 (2000). [CrossRef]
  16. J. M. López-Alonso, J. Alda, �??Bad pixel identification by means of the principal component analysis,�?? Opt. Eng. 41, 2152-2157 (2002). [CrossRef]
  17. J. M. López-Alonso, J. Alda, �??Characterization of artifacts in fully-digital image-acquisition systems. Application to web cameras,�?? Opt. Eng. 43, 257-265 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1829 KB)     
» Media 2: AVI (1885 KB)     
» Media 3: AVI (1829 KB)     
» Media 4: AVI (1125 KB)     
» Media 5: AVI (1351 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited