OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 10 — May. 16, 2005
  • pp: 3868–3876

Enhanced four-wave mixing via photonic bandgap coupled defect resonances

S. Blair  »View Author Affiliations

Optics Express, Vol. 13, Issue 10, pp. 3868-3876 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Frequency conversion efficiency via four-wave mixing in coupled 1-D photonic crystal defect structures is studied numerically. In structures where all interacting frequencies coincide with intraband defect resonances, energy conversion efficiencies greater than 5% are predicted. Because the frequency spacings are determined by the free-spectral range, thereby requiring long defects for small spacings using intraband resonances, four-wave mixing using coupled-defect miniband resonances in more compact structures is also studied. Conversion efficiencies of greater than 1% are obtained in this case.

© 2005 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.5750) Optical devices : Resonators

ToC Category:
Research Papers

Original Manuscript: April 5, 2005
Revised Manuscript: May 10, 2005
Published: May 16, 2005

S. Blair, "Enhanced four-wave mixing via photonic bandgap coupled defect resonances," Opt. Express 13, 3868-3876 (2005)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059�??2062 (1987). [CrossRef] [PubMed]
  2. S. John �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486�??2489 (1987). [CrossRef] [PubMed]
  3. T. F. Krauss �??Planar photonic crystal waveguide devices for integrated optics,�?? Physica Status Solidi A 197, 688�??702 (2003). [CrossRef]
  4. M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan �??Nonlinear photonic crystal microcavities for optical integration,�?? Opt. Lett. 28, 637�??639 (2003). [CrossRef] [PubMed]
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. Kim �??Two-dimensional photonic band-gap defect mode laser,�?? Science 284, 1819�??1821 (1999). [CrossRef] [PubMed]
  6. D. M. Pustai, A. Sharkawy, S. Shouyuan, and D. W. Prather �??Tunable photonic crystal microcavities,�?? Appl. Optics 41, 5574�??5579 (2002). [CrossRef]
  7. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen �??Photonic-bandgap microcavities in optical waveguides,�?? Nature 390, 143�??154 (1997). [CrossRef]
  8. A. S. Jugessur, P. Pottier, and R. M. D. L. Rue �??Engineering the filter response of photonic crystal microcavity filters,�?? Opt. Express 12, 1304�??1312 (2004). [CrossRef] [PubMed]
  9. N. Stefanou and A. Modinos �??Impurity bands in photonic insulators,�?? Phys. Rev. B 57, 12127�??12133 (1998). [CrossRef]
  10. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer �??Coupled-resonator optical waveguides: a proposal and analysis,�?? Opt. Lett. 24, 711�??713 (1999). [CrossRef]
  11. R. Houdre, and U. Oesterle �??Miniband transmission in a photonic crystal coupled-resonator optical waveguide,�?? Opt. Lett. 26, 1019�??1021 (2001). [CrossRef]
  12. S. Mookherjea and A. Yariv �??Second harmonic generation with pulses in a coupled-resonator optical waveguide,�?? Phys. Rev. E 65, (2002). [CrossRef]
  13. S. Blair �??Nonlinear sensitivity enhancement with one-dimensional photonic bandgap microcavity arrays,�?? Opt. Lett. 27, 613�??615 (2002). [CrossRef]
  14. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos �??Photonic crystal slow-light enhancement of nonlinear phase sensitivity,�?? J. Opt. Soc. Am. B 19, 2052�??2059 (2002). [CrossRef]
  15. S. Blair �??Self-focusing of narrow one-dimensional beams in photonic microcavity arrays,�?? J. Opt. Soc. Am. B 20, 1520-1526 (2003). [CrossRef]
  16. G. Priem, I. Notebaert, B. Maes, P. Bienstman, G. Morthier, and R. Baets �??Design of all-optical nonlinear functionalities based on resonators,�?? IEEE J. Sel. Top. Quantum Electron. 10, 1070�??1078 (2004). [CrossRef]
  17. G. Priem, I. Notebaert, P. Bienstman, G. Morthier, and R. Baets �??Resonator-based all-optical Kerr-nonlinear phase shifting: design and limitations,�?? J. Appl. Phys. 97, 023104 (2005). [CrossRef]
  18. D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski �??Photonic band gap airbridge microcavity resonances in GaAs/AlxOy waveguides,�?? J. Appl. Phys. 87, 1578�??1580 (2000). [CrossRef]
  19. M. J. Steel and C. M. de Sterke �??Parametric amplification of short pulses in optical fiber Bragg gratings,�?? Phys. Rev. E 54, 4271�??4284 (1996). [CrossRef]
  20. T. Hattori, N. Tsurumachi, and H. Nakatsuka �??Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals,�?? J. Opt. Soc. Am. B 14, 348�??355 (1997). [CrossRef]
  21. N. Tsurumachi, S. Yamashita, N. Muroi, T. Fuji, T. Hattori, and H. Nakatsuka �??Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,�?? Jpn. J. Appl. Phys. 38, 6302�??6308 (1999). [CrossRef]
  22. G. J. Schneider and G. H. Watson �??Nonlinear optical spectroscopy in one-dimensional photonic crystals,�?? Appl. Phys. Lett. 83, 5350�??5352 (2003). [CrossRef]
  23. A. Melloni, F. Morichetti, and M. Martinelli �??Optical slow wave structures,�?? Opt. Photon. News 14, 44�??48 (2003). [CrossRef]
  24. Y. Chen and S. Blair �??Nonlinearity enhancement in finite coupled-resonator slow-light waveguides,�?? Opt. Express 12, 3353�??3366 (2004). [CrossRef] [PubMed]
  25. Y. Chen, G. Pasrija, B. Farhang-Boroujeny, and S. Blair �??Engineering the nonlinear phase shift using multi-stage auto-regressive moving-average optical filters,�?? Appl. Opt. 13, 2564�??2574 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited