OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 11 — May. 30, 2005
  • pp: 3931–3944

Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm

B. Hyle Park, Mark C. Pierce, Barry Cense, Seok-Hyun Yun, Mircea Mujat, Guillermo J. Tearney, Brett E. Bouma, and Johannes F. de Boer  »View Author Affiliations


Optics Express, Vol. 13, Issue 11, pp. 3931-3944 (2005)
http://dx.doi.org/10.1364/OPEX.13.003931


View Full Text Article

Enhanced HTML    Acrobat PDF (826 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a high-speed multi-functional spectral-domain optical coherence tomography system, using a broadband light source centered at 1.3 µm and two InGaAs line scan cameras capable of acquiring individual axial scans in 24.4 µs, at a rate of 18,500 axial scans per second. Fundamental limitations on the accuracy of phase determination as functions of signal-to-noise ratio and lateral scan speed are presented and their relative contributions are compared. The consequences of phase accuracy are discussed for both Doppler and polarization-sensitive OCT measurements. A birefringence artifact and a calibration procedure to remove this artifact are explained. Images of a chicken breast tissue sample acquired with the system were compared to those taken with a time-domain OCT system for birefringence measurement verification. The ability of the system to image pulsatile flow in the dermis and to perform functional imaging of large volumes demonstrates the clinical potential of multi-functional spectral-domain OCT.

© 2005 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(230.5440) Optical devices : Polarization-selective devices
(260.1440) Physical optics : Birefringence
(280.2490) Remote sensing and sensors : Flow diagnostics

ToC Category:
Research Papers

History
Original Manuscript: April 22, 2005
Revised Manuscript: May 9, 2005
Published: May 30, 2005

Citation
B. Park, Mark C. Pierce, Barry Cense, Seok-Hyun Yun, Mircea Mujat, Guillermo Tearney, Brett Bouma, and Johannes de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-3931


Sort:  Journal  |  Reset  

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178 (1991). [CrossRef] [PubMed]
  2. E.A. Swanson, J.A. Izatt, M.R. Hee, D. Huang, C.P. Lin, J.S. Schuman, C.A. Puliafito, and J.G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864 (1993). [CrossRef] [PubMed]
  3. B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography," Gastrointestinal Endoscopy 51, 467 (2000). [CrossRef] [PubMed]
  4. I.K. Jang, G.J. Tearney, D.H. Kang, Y.C. Moon, S.J. Park, S.W. Park, K.B. Seung, S.L. Houser, M. Shishkov, E. Pomerantsev, H.T. Aretz, and B.E. Bouma, "Comparison of optical coherence tomography and intravascular ultrasound for detection of coronary plaques with large lipid-core in living patients," Circulation 102, 509 (2000).
  5. A.F. Fercher, C.K. Hitzenberger, G. Kamp, and S.Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Optics Communications 117, 43 (1995). [CrossRef]
  6. G. Hausler and M.W. Lindner, "Coherence Radar and Spectral Radar - New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21 (1998). [CrossRef]
  7. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," Journal of Biomedical Optics 7, 457 (2002). [CrossRef] [PubMed]
  8. S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, and B.E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>. [CrossRef] [PubMed]
  9. P. Andretzky, M.W. Lindner, J.M. Hermann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Hausler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78 (1998). [CrossRef]
  10. T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 38, 6133 (1999).
  11. R. Leitgeb, C.K. Hitzenberger, and A.F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>. [CrossRef] [PubMed]
  12. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, and B.E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067 (2003). [CrossRef] [PubMed]
  13. M.A. Choma, M.V. Sarunic, C.H. Yang, and J.A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>. [CrossRef] [PubMed]
  14. N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480 (2004). [CrossRef]
  15. N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, and J.F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>. [CrossRef] [PubMed]
  16. S.H. Yun, G.J. Tearney, B.E. Bouma, B.H. Park, and J.F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength," Opt. Express 11, 3598 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598</a>. [CrossRef] [PubMed]
  17. B.H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson, and J.F. de Boer, "In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography," J. Biomed. Opt. 6, 474 (2001). [CrossRef] [PubMed]
  18. M.C. Pierce, R.L. Sheridan, B.H. Park, B. Cense, and J.F. de Boer, "Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography," Burns 30, 511 (2004). [CrossRef] [PubMed]
  19. B. Cense, T.C. Chen, B.H. Park, M.C. Pierce, and J.F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Optics Letters 27, 1610 (2002). [CrossRef]
  20. D. Fried, J. Xie, S. Shafi, J.D.B. Featherstone, T.M. Breunig, and C. Le, "Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography," Journal of Biomedical Optics 7, 618 (2002). [CrossRef] [PubMed]
  21. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Optics Letters 27, 1803 (2002). [CrossRef]
  22. Y. Yasuno, S. Makita, T. Endo, M. Itoh, and T. Yatagai, "Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023 (2004). [CrossRef]
  23. X.J. Wang, T.E. Milner, and J.S. Nelson, "Characterization of Fluid-Flow Velocity by Optical Doppler Tomography," Opt. Lett. 20, 1337 (1995). [CrossRef] [PubMed]
  24. Z.P. Chen, T.E. Milner, D. Dave, and J.S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64 (1997). [CrossRef] [PubMed]
  25. J.A. Izatt, M.D. Kulkami, S. Yazdanfar, J.K. Barton, and A.J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy," Opt. Lett. 22, 1439 (1997). [CrossRef]
  26. Y.H. Zhao, Z.P. Chen, C. Saxer, S.H. Xiang, J.F. de Boer, and J.S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114 (2000). [CrossRef]
  27. R.A. Leitgeb, L. Schmetterer, C.K. Hitzenberger, A.F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171 (2004). [CrossRef] [PubMed]
  28. J.S. Nelson, K.M. Kelly, Y.H. Zhao, and Z.P. Chen, "Imaging blood flow in human Port-wine stain in situ and in real time using optical Doppler tomography," Arch. Dermatol. 137, 741 (2001). [PubMed]
  29. R.A. Leitgeb, L. Schmetterer, W. Drexler, A.F. Fercher, R.J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>. [CrossRef] [PubMed]
  30. B.R. White, M.C. Pierce, N. Nassif, B. Cense, B.H. Park, G.J. Tearney, B.E. Bouma, T.C. Chen, and J.F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>. [CrossRef] [PubMed]
  31. B.H. Park, M.C. Pierce, B. Cense, and J.F. de Boer, "Real-time multi-functional optical coherence tomography," Opt. Express 11, 782 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-782">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-782</a>. [CrossRef] [PubMed]
  32. Y.H. Zhao, Z.P. Chen, C. Saxer, Q.M. Shen, S.H. Xiang, J.F. de Boer, and J.S. Nelson, "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow," Opt. Lett. 25, 1358 (2000). [CrossRef]
  33. B.H. Park, M.C. Pierce, B. Cense, and J.F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components," Opt. Lett. 29, 2512 (2004). [CrossRef] [PubMed]
  34. M.C. Pierce, B.H. Park, B. Cense, and J.F. de Boer, "Simultaneous intensity, birefringence, and flow measurements with high speed fiber-based optical coherence tomography," Opt. Lett. 27, 1534 (2002). [CrossRef]
  35. S. Yazdanfar, C.H. Yang, M.V. Sarunic, and J.A. Izatt, "Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound," Opt. Express 13, 410 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-410">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-410</a>. [CrossRef]
  36. S.H. Yun, G.J. Tearney, J.F. de Boer, and B.E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977</a>. [CrossRef] [PubMed]
  37. A.M. Rollins, M.D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J.A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219 (1998), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a>. [CrossRef] [PubMed]
  38. V. Westphal, S. Yazdanfar, A.M. Rollins, and J.A. Izatt, "Real-time high velocity-resolution color Doppler optical coherence tomography," Opt. Lett. 27, 34 (2002). [CrossRef]
  39. V.X.D. Yang, M.L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, M. A., B.C. Wilson, and I.A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of xenopus laevis," Opt. Express 11, 1650 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1650">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1650</a>. [CrossRef] [PubMed]
  40. B.H. Park, M.C. Pierce, B. Cense, and J.F. de Boer, "Optic axis determination for fiber-based polarizationsensitive optical coherence tomography," Opt. Lett. (submitted for review), (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2186 KB)     
» Media 2: MOV (2150 KB)     
» Media 3: MOV (1057 KB)     
» Media 4: MOV (2360 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited