OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 11 — May. 30, 2005
  • pp: 3945–3950

Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification

Kevin Croussore, Inwoong Kim, Yan Han, Cheolhwan Kim, Guifang Li, and Stojan Radic  »View Author Affiliations

Optics Express, Vol. 13, Issue 11, pp. 3945-3950 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (370 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Amplification and simultaneous phase regeneration of DPSK signals is demonstrated using a phase-sensitive amplifier. Phase-sensitive gain is achieved in a Sagnac fiber interferometer comprised of non-polarization maintaining, highly nonlinear fiber operating in the un-depleted pump regime. Both the pump and signal are RZ-DPSK pulse trains. The amplifier is capable of producing greater than 13 dB of phase-sensitive gain for an average pumping power of 100 mW, and easily reduces the BER of the regenerated DPSK signal by two orders of magnitude compared to the un-regenerated signal, corresponding to a negative power penalty of 2 dB. Careful optimization of the regenerator reveals much stronger BER improvement.

© 2005 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.4510) Fiber optics and optical communications : Optical communications
(060.5060) Fiber optics and optical communications : Phase modulation
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Research Papers

Original Manuscript: March 25, 2005
Revised Manuscript: May 10, 2005
Published: May 30, 2005

Kevin Croussore, Inwoong Kim, Yan Han, Cheolhwan Kim, Guifang Li, and Stojan Radic, "Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification," Opt. Express 13, 3945-3950 (2005)

Sort:  Journal  |  Reset  


  1. H. Kim and A. H. Gnauck, �??Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,�?? IEEE Photon. Technol. Lett. 15, 320-322, (2003). [CrossRef]
  2. C. Pare, A. Villeneuve, P. A. Belanger and N. J. Doran, �??Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,�?? Opt. Lett. 21, 459-461, (1996). [CrossRef] [PubMed]
  3. I. R. Gabitov and P. M. Lushnikov, �??Nonlinearity management in a dispersion managed system,�?? Opt. Lett. 27, 113-115, (2002). [CrossRef]
  4. S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter and P. M. Krummrich, �??Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,�?? in proc. OFC, OTh05, Anaheim CA, 2005.
  5. X. Liu, X. Wei, R. E. Slusher and C. J. McKinstrie, �??Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation,�?? Opt. Lett. 27, 1616-1618, (2002). [CrossRef]
  6. C. Xu and X. Liu, �??Post-nonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,�?? Opt. Lett. 27, 1619-1621 (2002). [CrossRef]
  7. A. Striegler and B. Schmauss, �??All-Optical DPSK Signal Regeneration Based on Cross-Phase Modulation,�?? IEEE Photon. Tech. Lett. 16, 1083-1085 (2004) [CrossRef]
  8. A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs and B. Schmauss, �??NOLM-Based RZ-DPSK Signal Regeneration,�?? IEEE Photon. Technol. Lett. 17, 639-641 (2005). [CrossRef]
  9. M. Matsumoto, �??Regeneration of RZ-DPSK Signals by Fiber-Based All-Optical Regenerators,�?? IEEE Photon. Technol. Lett. 17, 1055-1057 (2005). [CrossRef]
  10. P. S. Devgan, M. Shin, V. S. Grigoryan, J. Lasri and P. Kumar, �??SOA-based regenerative amplification of phase noise degraded DPSK signals,�?? in proc. OFC, PDP34, Anaheim CA, 2005.
  11. M. E. Marhic, C. H. Hsia and J. M. Jeong, �??Optical Amplification in a nonlinear fiber interferometer,�?? Electron. Lett. 27, 210-211 (1991). [CrossRef]
  12. W. Imajuku, A. Takada and Y. Yamabayashi, �??Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,�?? Electron. Lett. 36, 63-64 (2000). [CrossRef]
  13. A. Takada and W. Imajuku, �??Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier,�?? Electron. Lett. 32, 677-679 (1996). [CrossRef]
  14. G. D. Bartolini, D. K. Serkland, P. Kumar and W. L. Kath, �??All-Optical Storage of a Picosecond-Pulse Packet Using Parametric Amplification,�?? IEEE Photon. Technol. Lett. 9, 1020-1022 (1997). [CrossRef]
  15. K. Croussore, C. Kim and G. Li, �??All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,�?? Opt. Lett. 28, 2357�??2359 (2004). [CrossRef]
  16. Norimatsu, S.; Iwashita, K.; Noguchi, K, �??An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,�?? IEEE Photon. Technol. Lett. 4 (7), 765-767 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited