OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 11 — May. 30, 2005
  • pp: 3989–3998

Enhanced Supercontinuum Generation through Dispersion-Management

J. Nathan Kutz, C. Lyngå, and B. J. Eggleton  »View Author Affiliations

Optics Express, Vol. 13, Issue 11, pp. 3989-3998 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1878 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show in theory and simulation that the supercontinuum generation from an initial continuous wave field in a highly nonlinear fiber operating near the zero-dispersion point can be significantly enhanced with the aid of dispersion management. We characterize the spectral broadening as a process initiated by modulational instability, but driven by the zero-dispersion dynamics of an N-soliton interacting with the asymmetric phase profile generated by the Raman effect, self-steepening effect, and/or higher-order dispersion. Higher N-soliton values lead to shorter pulses and a broader spectrum. This insight allows us to use dispersion management in conjunction with modulational instability to effectively increase the N value and greatly enhance the supercontiuum generation process.

© 2005 Optical Society of America

OCIS Codes
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Research Papers

Original Manuscript: April 5, 2005
Revised Manuscript: May 13, 2005
Published: May 30, 2005

J. Nathan Kutz, C Lyngå, and B. Eggleton, "Enhanced Supercontinuum Generation through Dispersion-Management," Opt. Express 13, 3989-3998 (2005)

Sort:  Journal  |  Reset  


  1. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765-771 (2002). [CrossRef]
  2. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, �??Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,�?? Opt. Express 10, 1083-1098 (2002). [PubMed]
  3. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, �??High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,�?? Opt. Lett. 29, 2163-2165 (2004). [CrossRef] [PubMed]
  4. A. K. Abeeluck and C. Headley, �??Supercontinuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,�?? App. Phys. Lett. 85, 4863 (2004). [CrossRef]
  5. A. Mussot, E. Lantz, H. Maillotte, and T. Sylvestre, �??Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,�?? Opt. Express 12 2838 (2004). [CrossRef] [PubMed]
  6. J. D. Harvey, R. Leonhardt, S. Coen, G.Wong, J. Knight, W. J.Wadsworth, P. St. J. Russell, �??Scalar modulational instability in the normal dispersion regime by use of photonic crystal fiber,�?? Opt. Lett. 28, 2225-2227 (2003). [CrossRef] [PubMed]
  7. A. Demircan and U. Bandelow, �??Supercontinuum generation by the modulation instability,�?? Opt. Comm. 244, 244-185 (2005). [CrossRef]
  8. E. Golovchenko, P. Mamyshev, A. Pilipetskii, E. A. Dianov, �??Mutual Influence of the Parametric Effects and Stimulated Raman Scattering in Optical Fibers,�?? IEEE J. Quant. Elec. 26, 1815-1820 (1990). [CrossRef]
  9. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000). [CrossRef]
  10. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, �??Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,�?? Opt. Express 12, 317-324 (2004). [CrossRef] [PubMed]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed., Academic Press, San Diego, 2001.
  12. A. Hasegawa and Y. Kodama, Solitons in Optical Communications, Oxford University Press, 1995.
  13. J. C. Bronski, �??Semiclassical eigenvalue distribution of the Zakharov-Shabat eigenvalue problem,�?? Physica D 97, 376-397 (1996) [CrossRef]
  14. J. C. Bronski and J. N. Kutz, �??Numerical simulation of the semiclassical limit of the focusing nonlinear Schrodinger equation ,�?? Phys. Lett. A 254, 325 (1999). [CrossRef]
  15. D. Krylov, L. Leng, K. Bergman, J. C. Bronski, and J. N. Kutz, �??Observation of the breakup of a pre-chirped N-soliton in an optical fiber,�?? Opt. Lett. 24, 1191-1193 (1999). [CrossRef]
  16. A. V. Husakou and J. Herrmann, �??Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  17. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P St. J. Russell, G. Korn, �??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 (2002) [CrossRef] [PubMed]
  18. K. Tai, A. Hasegawa, and N. Bekki, �??Fission of optical solitons induced by stimulated Raman effect,�?? Opt. Lett. 13, 392-394 (1988). [CrossRef] [PubMed]
  19. H. Kubota, K. Tamura, M. Nakazawa, �??Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,�?? J. Opt. Soc. Am. B 16, 2223-2232 (1999). [CrossRef]
  20. V. E. Zakharov and A. B. Shabat, �??Exact theory of two-dimensional self-focusing and one-dimensional selfmodulation of waves in nonlinear media,�?? Sov. Phys. JETP 34, 62-69 (1972).
  21. S. Friberg and K. Delong, �??Breakup of bound higher-order solitons,�?? Opt. Lett. 17, 979-981 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited