OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 11 — May. 30, 2005
  • pp: 4070–4084

Estimation of multiple phases in holographic moiré in presence of harmonics and noise using minimum-norm algorithm

Abhijit Patil and Pramod Rastogi  »View Author Affiliations


Optics Express, Vol. 13, Issue 11, pp. 4070-4084 (2005)
http://dx.doi.org/10.1364/OPEX.13.004070


View Full Text Article

Enhanced HTML    Acrobat PDF (4375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The paper proposes a novel approach for estimating multiple phases in holographic moiré. The need to design such an algorithm is necessitated by the development of optical configurations containing two phase stepping devices, e.g. PZTs, with a view to measure simultaneously two phase distributions. The approach consists of first applying minimum-norm algorithm to extract phase steps imparted to the PZTs. Salient feature of the algorithm lies in its ability to handle nonsinusoidal waveforms and noise. This approach also provides the flexibility of using arbitrary phase steps, a feature most commonly attributed to generalized phase shifting interferometry. Once the phase steps are estimated for each PZT, the Vandermonde system of equations is designed to estimate the phase distributions.

© 2005 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Research Papers

History
Original Manuscript: March 24, 2005
Revised Manuscript: May 13, 2005
Published: May 30, 2005

Citation
Abhijit Patil and Pramod Rastogi, "Estimation of multiple phases in holographic moiré in presence of harmonics and noise using minimum-norm algorithm," Opt. Express 13, 4070-4084 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-4070


Sort:  Journal  |  Reset  

References

  1. K. Creath, �??Phase-shifting holographic interferometry,�?? Holographic Interferometry, P. K. Rastogi, ed. (Springer Series in Optical Sciences, Berlin 1994), Vol.68, pp. 109-150.
  2. T. Kreis, Holographic interferometry Principles and Methods (Akademie Verlag, 1996) pp. 101-170.
  3. P. Carré, �??Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,�?? Metrologia 2, 13-23 (1966). [CrossRef]
  4. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, �??Digital wavefront measuring interferometer for testing optical surfaces and lenses, App. Opt. 13, 2693-2703 (1974). [CrossRef]
  5. J. E. Greivenkamp and J. H. Bruning, "Phase shifting interferometry Optical Shop Testing ed D. Malacara (New York: Wiley ) 501-598 (1992).
  6. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, �??Digital wave-front measuring interferometry: some systematic error sources,�?? Appl. Opt. 22, 3421-3432 (1983). [CrossRef] [PubMed]
  7. Y. Zhu and T. Gemma, �??Method for designing error-compensating phase-calculation algorithms for phase shifting interferometry,�?? App. Opt. 40, 4540-4546 (2001). [CrossRef]
  8. P. Hariharan, B. F. Oreb, and T. Eiju, �??Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,�?? App. Opt. 26, 2504-2506 (1987). [CrossRef]
  9. J. Schwider, O. Falkenstorfer, H. Schreiber, and A. Zoller, �??New compensating four-phase algorithm for phase-shift interferometry,�?? Opt. Eng. 32, 1883-1885 (1993). [CrossRef]
  10. Y. Surrel, �??Phase stepping: a new self-calibrating algorithm,�?? Appl. Opt. 32, 3598-3600 (1993). [CrossRef] [PubMed]
  11. Y. Surrel, �??Design of algorithms for phase measurements by the use of phase stepping,�?? Appl. Opt. 35, 51- 60 (1996). [CrossRef] [PubMed]
  12. J. van Wingerden, H. J. Frankena, and C. Smorenburg, �??Linear approximation for measurement errors in phase shifting interferometry,�?? Appl. Opt. 30, 2718-2729 (1991). [CrossRef] [PubMed]
  13. K. G. Larkin and B. F. Oreb, �??Design and assessment of symmetrical phase-shifting algorithms,�?? J. Opt. Soc. Am. A 9, 1740-1748 (1992). [CrossRef]
  14. K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin, �??Phase shifting for nonsinusoidal waveforms with phase-shift errors,�?? J. Opt. Soc. Am. A 12, 761-768 (1995). [CrossRef]
  15. Y. �??Y. Cheng and J. C. Wyant, �??Phase-shifter calibration in phase-shifting interferometry,�?? App. Opt. 24, 3049-3052 (1985). [CrossRef]
  16. B. Zhao, �??A statistical method for fringe intensity-correlated error in phase-shifting measurement: the effect of quantization error on the N-bucket algorithm,�?? Meas. Sci. Technol. 8, 147-153 (1997). [CrossRef]
  17. B. Zhao and Y. Surrel, �??Effect of quantization error on the computed phase of phase-shifting measurements,�?? Appl. Opt. 36, 2070-2075 (1997). [CrossRef] [PubMed]
  18. R. Józwicki, M. Kujawinska, and M. Salbut, �??New contra old wavefront measurement concepts for interferometric optical testing, Opt. Engg. 31, 422-433 (1992). [CrossRef]
  19. P. de Groot, �??Vibration in phase-shifting interferometry,�?? J. Opt. Soc. Am. A 12, 354-365 (1995). [CrossRef]
  20. P. de Groot and L. L. deck, �??Numerical simulations of vibration in phase-shifting interferometry,�?? App. Opt. 35, 2172-2178 (1996). [CrossRef]
  21. C. Rathjen, �??Statistical properties of phase-shift algorithms,�?? J. Opt. Soc. Am. A 12, 1997-2008 (1995). [CrossRef]
  22. P. L. Wizinowich, �??Phase-shifting interferometry in the presence of vibration: a new algorithm and system,�?? Appl. Opt. 29, 3271-3279 (1990). [CrossRef] [PubMed]
  23. C. Joenathan and B. M. Khorana, �??Phase measurement by differentiating interferometric fringes, �??J. Mod. Opt. 39, 2075-2087 (1992). [CrossRef]
  24. K. Kinnnstaetter, A. W. Lohmann, J Schwider, and N. Streibl, �??Accuracy of phase shifting interferometry,�?? Appl. Opt. 27, 5082-5089 (1988). [CrossRef]
  25. P. K. Rastogi, �??Phase shifting applied to four-wave holographic interferometers,�?? App. Opt. 31, 1680-1681 (1992). [CrossRef]
  26. P. K. Rastogi, �??Phase-shifting holographic moiré: phase-shifter error-insensitive algorithms for the extraction of the difference and sum of phases in holographic moiré,�?? App. Opt. 32, 3669-3675 (1993). [CrossRef]
  27. P. K. Rastogi and E. Denarié, �??Visualization of in-plane displacement fields using phase shifting holographic moiré: application to crack detection and propagation,�?? App. Opt. 31, 2402-2404 (1992). [CrossRef]
  28. P. K. Rastogi, M. Barillot, and G. Kaufmann, �??Comparative phase shifting holographic interferometry,�?? Appl. Opt. 30, 722-728 (1991)C. J. Morgan, �??Least squares estimation in phase-measurement interferometry,�?? Opt. Lett. 7, 368-370 (1982). [CrossRef] [PubMed]
  29. P. K. Rastogi, M. Spajer, and J. Monneret, �??In-plane deformation measurement using holographic moiré,�?? Opt. Lasers Eng. 2, 79-103 (1981). [CrossRef]
  30. A. Patil, R. Langoju , and P Rastogi, �??An integral approach to phase shifting interferometry using a super-resolution frequency estimation method,�?? Opt. Express 12, 4681-4697 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4681.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4681.</a> [CrossRef] [PubMed]
  31. R. Kumaresan and D. W. Tufts, �??Estimating the angles of arrival of multiple plane waves,�?? IEEE Transactions on Aerospace and Electronic Systems AES-19, 134-139 (1983). [CrossRef]
  32. M. Kaveh and A. J, Barabell, �??The statistical performance of the MUSIC and the Minimum-Norm algorithms in resolving plane waves in noise,�?? IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-34, 331-341 (1986). [CrossRef]
  33. J. E. Grievenkamp, �??Generalized data reduction for heterodyne interferometry,�?? Opt. Eng. 23, 350-352 (1984).
  34. C. J. Morgan, �??Least squares estimation in phase-measurement interferometry,�?? Opt. Lett. 7, 368-370 (1982). [CrossRef] [PubMed]
  35. R. Roy and T. Kailath, �??ESPRIT-Estimation of signal parameters via rotational invariance techniques,�?? IEEE Trans. Acoustics, Speech, and Signal Processing 37, 984-995 (1989). [CrossRef]
  36. R. O. Schmidt, �??Multiple emitter location and signal parameter estimation,�?? in Proceedings RADC, Spectral Estimation Workshop, Rome, NY, (243-258) 1979.
  37. G. Bienvenu, �??Influence of the spatial coherence of the background noise on high resolution passive methods,�?? in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Washington, DC, 306-309 (1979).
  38. T. Söderström and P. Stoica, �??Accuracy of high-order Yule-Walker methods for frequency estimation of complex sine waves,�?? IEEE Proceedings-F 140, 71-80 (1993).
  39. A. J. Barabell, �??Improving the resolution performance of eigenstructure-based direction-finding algorithms,�?? in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Boston, MA, 336-339 (1983).
  40. J. J. Fuchs, �??Estimating the number of sinusoids in additive white noise,�?? IEEE Transactions on Acoustics, Speech, and Signal Processing 36, 1846-1853 (1988). [CrossRef]
  41. B. D. Rao and K. V. S. Hari, �??Weighted subspace methods and spatial smoothing: analysis and comparison�??, IEEE Trans. Signal Processing 41, 788-803 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited