OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 11 — May. 30, 2005
  • pp: 4113–4124

Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes

Simin Feng, J. Merle Elson, and Pamela L. Overfelt  »View Author Affiliations

Optics Express, Vol. 13, Issue 11, pp. 4113-4124 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a systematic study of mode characteristics of multilayer metal-dielectric (M-D) nanofilm structures. This structure can be described as a coupled-plasmon-resonantwaveguide (CPRW), a special case of coupled-resonator optical waveguide (CROW). Similar to a photonic crystal, the M-D is periodic, but there is a major difference in that the fields are evanescent everywhere in the M-D structure as in a nanoplasmonic structure. The transmission coefficient exhibits periodic oscillation with increasing number of periods. As a result of surface-plasmon-enhanced resonant tunneling, a 100% transmission occurs periodically at certain thicknesses of the M-D structure, depending on the wavelength, lattice constants, and excitation conditions. This structure indicates that a transparent material can be composed from non-transparent materials by alternatively stacking different materials of thin layers. The general properties of the CPRW and resonant tunneling phenomena are discussed.

© 2005 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(160.4760) Materials : Optical properties
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(240.7040) Optics at surfaces : Tunneling
(260.3910) Physical optics : Metal optics

ToC Category:
Research Papers

Original Manuscript: April 22, 2005
Revised Manuscript: May 16, 2005
Published: May 30, 2005

Simin Feng, J. Elson, and Pamela Overfelt, "Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes," Opt. Express 13, 4113-4124 (2005)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited Spontaneous Emission in Solid-State Physics and Electronics,�?? Phys. Rev. Lett. 58, 2059�??2062 (1987). [CrossRef] [PubMed]
  2. K. M. HO, C. T. Chan, and C. M. Soukoulis, �??Existence of Photonic Gap in Periodic Dielectric Structures,�?? Phys. Rev. Lett. 65, 3152�??3155 (1990). [CrossRef] [PubMed]
  3. J. M. Bendickson, J. P. Dowling, and M. Scalora, �??Analytical expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,�?? Phys. Rev. E 53, 4107�??4121 (1996). [CrossRef]
  4. M. Bayindir, B. Temelkuran, and E. Ozbay, �??Tight-Binding Description of the Coupled Defect Modes in Three-Dimensional Photonic Crystals,�?? Phys. Rev. Lett. 84, 2140�??2143 (2000). [CrossRef] [PubMed]
  5. S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, �??Analysis of defect coupling in one-and two-dimensional photonic crystals,�?? Phys. Rev. B 65, 165208 (2002). [CrossRef]
  6. R. L. Nelson and J.W. Haus, �??One-dimensional photonic crystals in reflection geometry for optical applications,�?? Appl. Phys. Lett. 83, 1089�??1091 (2003). [CrossRef]
  7. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, �??Coupled-resonator optical waveguide: a proposal and analysis,�?? Opt. Lett. 24, 711�??713 (1999). [CrossRef]
  8. Y.-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, �??Finite-size effect on one-dimensional coupled-resonator optical waveguides,�?? Phys. Rev. E 69, 056604 (2004). [CrossRef]
  9. V. Kuzmiak, A. A. Maradudin, and F. Pincemin, �??Photonic band structures of two-dimensional systems containing metallic components,�?? Phys. Rev. B 50, 16835�??16844 (1994). [CrossRef]
  10. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, �??Metallic photonic band-gap materials.�?? Phys. Rev. B 52, 11744�??11751 (1995). [CrossRef]
  11. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, �??Large omnidirectional band gaps in metallodielectric photonic crystals,�?? Phys. Rev. B 54, 11245�??11251 (1996). [CrossRef]
  12. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, �??Transparent, metallodielectric, one-dimensional, photonic band-gap structures.�?? J. Appl. Phys. 83, 2377�??2383 (1998). [CrossRef]
  13. S. Feng, M. Elson, and P. Overfelt, �??Transparent photonic band in metallodielectric nanostructures.�?? Submitted to Phys. Rev. B (2005).
  14. R. D. Meade, K. D. Brommer, A.M. Rappe, and J. D. Joannopoulos, �??Electromagnetic Bloch waves at the surface of a photonic crystal,�?? Phys. Rev. B 44, 10961�??10964 (1991). [CrossRef]
  15. S. C. Kitson,W. L. Barnes, and J. R. Sambles, �??Full Photonic Band Gap for Surface Modes in the Visible,�?? Phys. Rev. Lett. 77, 2670�??2673 (1996). [CrossRef] [PubMed]
  16. M. Kretschmann and A. A. Maradudin, �??Band structures of two-dimensional surface-plasmon polaritonic crystals,�?? Phys. Rev. B 66, 245408 (2002). [CrossRef]
  17. J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, �??Mimicking Surface Plasmons with Structured Surfaces,�?? Science 305, 847 (2004). [CrossRef] [PubMed]
  18. M. F. Yanik and S. Fan, �??Stopping and storing light coherently,�?? Phys. Rev. A 71, 013803 (2005) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited