OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 11 — May. 30, 2005
  • pp: 4141–4147

Electrically switchable Fresnel lens using a polymer-separated composite film

Yun-Hsing Fan, Hongwen Ren, and Shin-Tson Wu  »View Author Affiliations

Optics Express, Vol. 13, Issue 11, pp. 4141-4147 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (986 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Fresnel lens with electrically-tunable diffraction efficiency while possessing high image quality is demonstrated using a phase-separated composite film (PSCOF). The light scattering-free PSCOF is obtained by anisotropic phase separation between liquid crystal and polymer. Such a lens can be operated below 12 volts and its switching time is reasonably fast (~10 ms). The maximum diffraction efficiency reaches ~35% for a linearly polarized light, which is close to the theoretical limit of 41%.

© 2005 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers

ToC Category:
Research Papers

Original Manuscript: April 29, 2005
Revised Manuscript: May 17, 2005
Published: May 30, 2005

Yun-Hsing Fan, Hongwen Ren, and Shin-Tson Wu, "Electrically switchable Fresnel lens using a polymer-separated composite film," Opt. Express 13, 4141-4147 (2005)

Sort:  Journal  |  Reset  


  1. E. Marom, E. Ben-Eliezer, L. P. Yaroslavsky, and Z. Zalevsky, �??Two methods for increasing the depth of focus of imaging systems,�?? Proc. SPIE 5227, 8-15 (2004).
  2. M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, �??Diffractive elements with extended depth of focus,�?? Proc. SPIE 5484, 475-481 (2004). [CrossRef]
  3. S. C. Kim, S. E. Lee, and E. S. Kim, �??Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,�?? Proc. SPIE 5443, 250-256 (2004). [CrossRef]
  4. X. Ren, S. Liu, and X. Zhang, �??Fabrication of off-axis holographic Fresnel lens used as multiplexer/demultiplexer in optical communications,�?? Proc. SPIE 5456, 391-398 (2004). [CrossRef]
  5. J. T. Early and R. Hyde, �??Twenty-meter space telescope based on diffractive Fresnel lens,�?? Proc. SPIE 5166, 148-156 (2004). [CrossRef]
  6. C.-H. Tsai, P. Lai; K. Lee; C. K. Lee, �??Fabrication of a large F-number lenticular plate and its use as a small-angle flat-top diffuser in autostereoscopic display screens,�?? Proc. SPIE 3957, 322-329 (2000). [CrossRef]
  7. N. Kitaura, S. Ogata, and Y. Mori, �??Spectrometer employing a micro-Fresnel lens,�?? Opt. Eng. 34, 584-588 (1995). [CrossRef]
  8. J. Jahns and S. J. Walker, �??Two-dimensional array of diffractive microlenses fabricated by thin film deposition,�?? Appl. Opt. 29, 931-936 (1990). [CrossRef] [PubMed]
  9. K. Rastani, A. Marrakchi, S. F. Habiby, W. M. Hubbard, H. Gilchrist, and R. E. Nahory, Appl. Opt. 30, 1347-1354 (1991). [CrossRef] [PubMed]
  10. L. Mingtao, J. Wang, L. Zhuang, and S. Y. Chou, �??Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,�?? Appl. Phys. Lett. 76, 673-675 (2000). [CrossRef]
  11. J. Canning, K. Sommer, S. Huntington, and A. Carter, �??Silica-based fiber Fresnel lens,�?? Opt. Comm. 199, 375-381 (2001). [CrossRef]
  12. G. Williams, N. J. Powell, A. Purvis and M. G. Clark, �??Electrically controllable liquid crystal Fresnel lens,�?? Proc. SPIE 1168, 352-357 (1989).
  13. J. S. Patel and K. Rastani, �??Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays,�?? Opt. Lett. 16, 532-534 (1991). [CrossRef] [PubMed]
  14. M. Ferstl and A. Frisch, �??Static and dynamic Fresnel zone lenses for optical interconnections,�?? J. Mod. Opt. 43, 1451-1462 (1996). [CrossRef]
  15. H. Ren, Y. H. Fan, and S. T. Wu, �??Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,�?? Appl. Phys. Lett. 83, 1515-1517 (2003). [CrossRef]
  16. Y. H. Fan, H. Ren and S. T. Wu, �??Switchable Fresnel lens using polymer-stabilized liquid crystals,�?? Opt. Express 11, 3080-3086 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3080">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3080</a> [CrossRef] [PubMed]
  17. R. S. Cudney, L. A. Ríos, H. M. Escamilla, �??Electrically controlled Fresnel zone plates made from ring-shaped 180° domains,�?? Opt. Express 12, 5783-5788 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5783.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5783</a> [CrossRef] [PubMed]
  18. V. Vorflusev and S. Kumar, �??Phase-Separated Composite Films for Liquid Crystal Displays,�?? Science 283, 1903-1905 (1999). [CrossRef] [PubMed]
  19. Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, �??Fast-response and scattering-free polymer network liquid crystals,�?? Appl. Phys. Lett. 84, 1233-1235 (2004). [CrossRef]
  20. W. T. He, T. Nose, and S. Sato, �??Novel liquid crystal grating with a relief structure by a simple UV irradiation Process,�?? Jpn. J. Appl. Phys. 37, 4066-4069 (1998). [CrossRef]
  21. R. Menon, E. E. Moon, M. K. Mondol, F. J. Castaño, and H. I. Smith, �??Scanning-spatial-phase alignment for zone-plate-array lithography,�?? J. Vac. Sci. Technol. B 22, 3382-3385 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited