OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 11 — May. 30, 2005
  • pp: 4286–4295

Effect of wavelength dependence of nonlinearity, gain, and dispersion in photonic crystal fiber amplifiers

A. Huttunen and P. Törmä  »View Author Affiliations


Optics Express, Vol. 13, Issue 11, pp. 4286-4295 (2005)
http://dx.doi.org/10.1364/OPEX.13.004286


View Full Text Article

Enhanced HTML    Acrobat PDF (196 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonic crystal fibers are used in fiber amplifiers and lasers because of the flexibility in the design of mode area and dispersion. However, these quantities depend strongly on the wavelength. The wavelength dependence of gain, nonlinearity and dispersion are investigated here by including the wavelength dependence explicitly in the nonlinear Schrödinger equation for photonic crystal fibers with varying periods and hole sizes. The effect of the wavelength dependence of each parameter is studied separately as well as combined. The wavelength dependence of the parameters is shown to create asymmetry to the spectrum and chirp, but to have a moderating effect on pulse broadening. The effect of including the wavelength dependence of nonlinearity in the simulations is demonstrated to be the most significant compared that of dispersion or gain.

© 2005 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Research Papers

History
Original Manuscript: May 3, 2005
Revised Manuscript: May 23, 2005
Published: May 30, 2005

Citation
Anu Huttunen and P. Törmä, "Effect of wavelength dependence of nonlinearity, gain, and dispersion in photonic crystal fiber amplifiers," Opt. Express 13, 4286-4295 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-4286


Sort:  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547�??1549 (1996). [CrossRef] [PubMed]
  2. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476�??1478 (1998). [CrossRef] [PubMed]
  3. W. J.Wadsworth, J. C. Knight, W. H. Reeves, P. St. J. Russell, and J. Arriaga �??Yb3+-doped photonic crystal fibre laser,�?? Electron. Lett. 36, 1452�??1454 (2000). [CrossRef]
  4. K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, �??Modelocked laser based on ytterbium doped holey fibre,�?? Electron. Lett. 37, 560�??561 (2001). [CrossRef]
  5. J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, �??Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,�?? Electron. Lett. 37, 1116�??1117 (2001). [CrossRef]
  6. K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, �??Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,�?? Opt. Express 9, 714�??720 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-714">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-714</a>. [CrossRef] [PubMed]
  7. P. Glas and D. Fischer, �??Cladding pumped large-mode-area Nd-doped holey fiber laser,�?? Opt. Express 10, 286�??290 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-6-286">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-6-286</a>. [PubMed]
  8. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, and P. St. J. Russell, �??High power air-clad photonic crystal fibre laser,�?? Opt. Express 11, 48�??53 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-48">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-48</a>. [CrossRef] [PubMed]
  9. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. T¨unnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, �??High-power air-clad large-mode-area photonic crystal fiber laser,�?? Opt. Express 11, 818-823 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818</a>. [CrossRef] [PubMed]
  10. J. Canning, N. Groothoff, E. Buckley, T. Ryan, K. Lyytikainen, and J. Digweed, �??All-fibre photonic crystal distributed Bragg reflector (PC-DBR) fibre laser,�?? Opt. Express 11, 1995-2000 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-1995">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-1995</a>. [CrossRef] [PubMed]
  11. A. Argyros, M. A. van Eijkelenborg, S. D. Jackson, and R. P. Mildren, �??Microstructured polymer fiber laser,�?? Opt. Lett. 29, 1882�??1884 (2004). [CrossRef] [PubMed]
  12. F. C. McNeillie, E. Riis, J. Broeng, J. R. Folkenberg, A. Petersson, H. Simonsen, and C. Jakobsen, �??Highly polarized photonic crystal fiber laser,�?? Opt. Express 12, 3981-3987 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3981">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3981</a>. [CrossRef] [PubMed]
  13. M. Moenster, P. Glas, G. Steinmeyer, and R. Iliew, �??Mode-locked Nd-doped microstructured fiber laser,�?? Opt. Express 12, 4523�??4528 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4523">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4523</a>. [CrossRef] [PubMed]
  14. A. Maf�?, J. V. Moloney, D. Kouznetsov, A. Schülzgen, S. Jiang, T. Luo, and N. Peyghambarian, �??A Large-core compact high-power single-mode photonic crystal fiber laser,�?? IEEE Photon. Tech. Lett. 16, 2595�??2597 (2004). [CrossRef]
  15. K. Furusawa, T. Kogure, J. K. Sahu, J. H. Lee, T. M. Monro, and D. J. Richardson, �??Efficient low-threshold lasers based on an erbium-doped holey fiber,�?? IEEE Photon. Tech. Lett. 17, 25�??27 (2005). [CrossRef]
  16. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, �??High-power rod-type photonic crystal fiber laser,�?? Opt. Express 13, 1055�??1058 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1055">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1055</a>. [CrossRef] [PubMed]
  17. J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, �??Tunable, femtosecond pulse source operating in the range 1.06-1.33 µm based on an Yb3+ doped holey fiber amplifier,�?? J. Opt. Soc. Am. B 19, 1286�??1294 (2002). [CrossRef]
  18. A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, �??Amplification properties of Er3+-doped photonic crystal fibers,�?? J. Lightwave Tech. 21, 782�??788 (2003). [CrossRef]
  19. K. G. Hougaard, J. Broeng, and A. Bjarklev, �??Low pump power photonic crystal fibre amplifiers,�?? Electron. Lett. 39, 599�??600 (2003). [CrossRef]
  20. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Pettersson, and C. Jakobsen, �??Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,�?? Opt. Express 12, 1313�??1319 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313</a>. [CrossRef] [PubMed]
  21. K. Furusawa, T. Kogure, T. M. Monro, and D. J. Richardson, �??High gain efficiency ampli-fier based on an erbium doped aluminosilicate holey fiber,�?? Opt. Express 12, 3452-3458 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3452">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3452</a>. [CrossRef] [PubMed]
  22. A. Cucinotta, F. Poli, and S. Selleri, �??Design of Erbium-doped triangular photonic-crystal-fiber-based amplifiers,�?? IEEE Photon. Tech. Lett. 16, 2027�??2029 (2004). [CrossRef]
  23. C. Li, Y. Huang, W. Zhang, Y. Ni, and J. Peng, �??Amplification properties of erbium-doped solid-core photonic bandgap fibers,�?? IEEE Photon. Tech. Lett. 17, 324�??326 (2005). [CrossRef]
  24. A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, �??Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 µm,�?? Opt. Express 13, 1221�??1227 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1221">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1221</a>. [CrossRef] [PubMed]
  25. R. Hainberger and S. Watanabe, �??Impact of the wavelength dependence of the mode field on the nonlinearity coefficient of PCFs,�?? IEEE Photon. Tech. Lett. 17, 70�??72 (2005). [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics, (Academic, London, 1995).
  27. A. Huttunen and P. Törmä, �??Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,�?? Opt. Express 13, 627�??635 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-627">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-627</a>. [CrossRef] [PubMed]
  28. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173�??190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited