OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 11 — May. 30, 2005
  • pp: 4331–4340

Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation

M. Sumetsky  »View Author Affiliations


Optics Express, Vol. 13, Issue 11, pp. 4331-4340 (2005)
http://dx.doi.org/10.1364/OPEX.13.004331


View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The coil optical resonator (COR) is an optical microfiber coil tightly wound on an optical rod. The resonant behavior of this all-pass device is determined by evanescent coupling between the turns of the microfiber. This paper investigates the uniform COR with N turns. Its transmission characteristics are surprisingly different from those of the known types of resonators and of photonic crystal structures. It is found that for certain discrete sequences of propagation constant and interturn coupling, the light is completely trapped by the resonator. For N →∞, the COR spectrum experiences a fractal collapse to the points corresponding to the second order zero of the group velocity. For a relatively small coupling between turns, the COR waveguide behavior resembles that of a SCISSOR (side-coupled integrated spaced sequence of resonators), while for larger coupling it resembles that of a CROW (coupled resonator optical waveguide).

© 2005 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(190.0190) Nonlinear optics : Nonlinear optics
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Research Papers

History
Original Manuscript: March 30, 2005
Revised Manuscript: May 18, 2005
Published: May 30, 2005

Citation
M. Sumetsky, "Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation," Opt. Express 13, 4331-4340 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-4331


Sort:  Journal  |  Reset  

References

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, �??Subwavelength-diameter silica wires for low-loss optical wave guiding,�?? Nature, 426, 816-819 (2003). [CrossRef] [PubMed]
  2. G. Brambilla, V. Finazzi, and D. J. Richardson, �??Ultra-low-loss optical fiber nanotapers,�?? Opt. Express, 12, 2258- 2263 (2004) , <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2258">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2258</a> [CrossRef] [PubMed]
  3. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth and P. St.J. Russell, �??Supercontinuum generation in submicron fibre waveguides,�?? Opt. Express, 12, 2864-2869 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864</a>. [CrossRef] [PubMed]
  4. M. Sumetsky, �??Optical fiber microcoil resonator,�?? Opt. Express, 12, 2303-2316 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2303">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2303</a>. [CrossRef] [PubMed]
  5. K. J. Vahala, �??Optical microcavities,�?? Nature, 424, 839-846 (2003). [CrossRef] [PubMed]
  6. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, �??Demonstration of the microfiber loop optical resonator,�?? Optical Fiber Communication Conference, Postdeadline papers, Paper PDP10, Anaheim (2005), <a href= "http://www.ofcnfoec.org/materials/PDP10.pdf">http://www.ofcnfoec.org/materials/PDP10.pdf</a>.
  7. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, �??Optical microfiber loop resonator,�?? Appl. Phys. Lett. 86, 161108 (2005). [CrossRef]
  8. C. K. Madsen, S. Chandrasekhar, E. J. Laskowski, M. A. Cappuzzo, J. Bailey, E. Chen, L. T. Gomez, A. Griffin, R. Long, M. Rasras, A. Wong-Foy, L. W. Stulz, J. Weld, and Y. Low, �??An integrated tunable chromatic dispersion compensator for 40 Gb/s NRZ and CSRZ,�?? Optical Fiber Communication Conference, Postdeadline papers, Paper FD9, Anaheim (2002).
  9. G. Bourdon, G. Alibert, A. Beguin, B. Bellman, and E. Guiot, �??Ultralow Loss Ring Resonators Using 3.5% Index-Contrast Ge-Doped Silica Waveguides,�?? IEEE Photon. Technol. Lett. 15, 709-711 (2003). [CrossRef]
  10. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, �??Very High-Order Microring Resonator Filters for WDM Applications,�?? IEEE Photon. Technol. Lett, 16, 2263-2265 (2004). [CrossRef]
  11. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, �??Ultrahigh-quality-factor silicon-on-insulator microring resonator,�?? Opt. Lett. 29, 2861-2863 (2004). [CrossRef]
  12. A. Yariv, Y. Xu, R. K. .Lee, and A. Scherer, �??Coupled-resonator optical waveguide: a proposal and analysis,�?? Opt. Lett., 24, 711-713 (1999). [CrossRef]
  13. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, �??Designing coupled-resonator optical waveguide delay lines,�?? J. Opt. Soc. Am. B 21, 1665-1672 (2004). [CrossRef]
  14. J. E. Heebner, R. W. Boyd, and Q-H. Park, �??SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,�?? J. Opt.Soc. Am. B 19, 722-731 (2002). [CrossRef]
  15. A. Figotin and I. Vitebskiy, �??Electromagnetic unidirectionality in magnetic photonic crystals,�?? Phys. Rev. B 67, 165210 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited