OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 12 — Jun. 13, 2005
  • pp: 4465–4475

Investigation of bi-phasic tumor oxygen dynamics induced by hyperoxic gas intervention: A numerical study

Jae G. Kim and Hanli Liu  »View Author Affiliations


Optics Express, Vol. 13, Issue 12, pp. 4465-4475 (2005)
http://dx.doi.org/10.1364/OPEX.13.004465


View Full Text Article

Enhanced HTML    Acrobat PDF (670 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study intends to explore the underlying principle of the bi-phasic behavior of increases in oxygenated hemoglobin concentration that was observed in vivo from rat breast tumors during carbogen/oxygen inhalation. We have utilized the Finite Element Method (FEM) to simulate the effects of different blood flow rates, in several geometries, on the near infrared measurements. The results show clearly that co-existence of two blood flow velocities can result in a bi-phasic change in optical density, regardless of the orientation of vessels. This study supports our previous hypothesis that the bi-phasic tumor hemodynamic feature during carbogen inhalation results from a well-perfused and a poorly perfused region in the tumor vasculature.

© 2005 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.1990) Scattering : Diffusion

ToC Category:
Research Papers

History
Original Manuscript: April 13, 2005
Revised Manuscript: May 23, 2005
Manuscript Accepted: May 30, 2005
Published: June 13, 2005

Citation
Jae G. Kim and Hanli Liu, "Investigation of bi-phasic tumor oxygen dynamics induced by hyperoxic gas intervention: A numerical study," Opt. Express 13, 4465-4475 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Vaupel, O. Thews, D. K. Kelleher, M. Höckel, “Current status of knowledge and critical issues in tumor oxygenation,” In: Hudetz, Bruley (eds), Oxygen Transport to Tissue XX, 591–602 (Plenum Press, New York, 1998).
  2. P. Vaupel, “Vascularization, blood flow, oxygenation, tissue pH, and bioenergetic status of human breast cancer,” In: Nemoto, LaManna (eds), Oxygen Transport to Tissue XVIII, 243–253 (Plenum Press, New York, 1997).
  3. P. Vaupel, “Oxygen transport in tumors: Characteristics and clinical implications,” Adv. Exp. Med. Biol., 388, 341–351 (1996). [CrossRef] [PubMed]
  4. R. H. Thomlinson, L. H. Gray, “The histological structure of some human lung cancers and the possible implications for radiotherapy,” Br. J. Cancer, 9, 539–549 (1955). [CrossRef] [PubMed]
  5. E. E. Schwartz, The biological basis of radiation therapy (Lippincott, Philadelphia, 1966).
  6. B. Teicher, J. Lazo, A. Sartorelli, “Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells,” Cancer Res., 41, 73–81 (1981). [PubMed]
  7. J. D. Chapman, C. C. Stobbe, M. R. Arnfield, R. Santus, J. Lee, M. S. McPhee, “Oxygen dependency of tumor cell killing in vitro by light activated photofrin II,” Radiat. Res., 126, 73–79 (1991). [CrossRef] [PubMed]
  8. P. Bergsjo, P. Kolstad, “Clinical trial with atmospheric oxygen breathing during radiotherapy of cancer of the cervix,” Scand. J. Clin. Lab. Invest. Suppl., 106, 167–171 (1968). [PubMed]
  9. H. D. Suit, N. Marshall, D. Woerner, “Oxygen, oxygen plus carbon dioxide, and radiation therapy of a mouse mammary carcinoma. Cancer,” Cancer, 30, 1154–1158 (1972). [CrossRef] [PubMed]
  10. H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive Investigation of Blood Oxygenation Dynamics of Tumors by Near-Infrared Spectroscopy,” Appl. Opt., 39, 5231–5243 (2000). [CrossRef]
  11. J. G. Kim, D. Zhao, Y. Song, A. Constantinescu, R. P. Mason, H. Liu, “Interplay of Tumor Vascular Oxygenation and Tumor pO2 Observed Using NIRS, pO2 Needle Electrode and 19F MR pO2 Mapping,” J. of Biomed. Opt., 8, 53–62 (2003). [CrossRef]
  12. Y. Gu, V. A. Bourke, J. G. Kim, A. Constantinescu, R. P. Mason, H. Liu, “Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters,” Appl. Opt., 42, 2960–2967 (2003). [CrossRef] [PubMed]
  13. S. S. Kety, “The theory and applications of the exchange of inert gas at the lungs and tissue,” Pharmacol. Rev., 3, 1–41 (1951). [PubMed]
  14. A.H. Hielsher, S. L. Jacquest, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol., 40, 1957–1975 (1995). [CrossRef]
  15. R.A. Groenhuis, A.A. Ferwerda, J. J. T. Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt., 22, 2456–2462 (1983) [CrossRef] [PubMed]
  16. J. B. Mandeville, J.J.A. Marota, C. Ayata, G. Zaharchuk, M.A. Moskowitz, B. R. Rosen, R. M. Weisskoff, “Evidence of a cerebrovascular postarteriole windkessel with delayed compliance,” J. Cereb. Blood Flow Metab., 19, 679–689 (1999). [CrossRef] [PubMed]
  17. M. E. Brevard, T. Q. Duong, J. A. King, C. F. Ferris, “Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions,” Magn. Res. Imaging., 21, 995–1001 (2003). [CrossRef]
  18. H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of Blood Vessels on the Measurement of Hemoglobin Oxygenation as Determined by Time-Resolved Reflectance Spectroscopy,” Medical Physics, 22, 1209–1217 (1995). [CrossRef] [PubMed]
  19. Y. Gu, R. Mason, H. Liu, “Estimated fraction of tumor vascular blood contents sampled by near infrared spectroscopy and 19F magnetic resonance spectroscopy,” Optics Express, 13, 1724–1733 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1724 [CrossRef] [PubMed]
  20. M. Xia, H. Liu, “A model of the hemodynamic response of tumor in rats with hyperoxic gas challenge”, Optical Tomography and Spectroscopy of Tissue VII, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE5693, in press (2005).
  21. D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski1, R. A. Poldrack, B. R. Rosen, J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol., 48, 2405–2418 (2003). [CrossRef] [PubMed]
  22. A. R. Padhani, A. Dzik-Jurasz, “Perfusion MR imaging of extracranial tumor angiogenesis,” Top. Magn. Reson. Imaging, 15, 41–57 (2004). [CrossRef] [PubMed]
  23. A. Y. Bluestone, M. Stewart, J. Lasker, G.S. Absoulaev, A. H. Hielscher, “Three-dimensional optical tomographic brainimaging in small animals, part1:hypercapnia,” J. Biomed. Opt., 9, 1046–1062 (2004). [CrossRef] [PubMed]
  24. E. Rostrup, I. Law, F. Pott, K. Ide, G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain research, 954, 183–193 (2002). [CrossRef] [PubMed]
  25. R.B. Buxton, E.C. Wong, L.R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med., 39, 855–864 (1998). [CrossRef] [PubMed]
  26. K. J. Friston, A. Mechelli, R. Turner, C. J. Price, “Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics,” NeuroImage, 12, 466–477 (2000). [CrossRef] [PubMed]
  27. A. Mechelli, C. J. Price, K. J. Friston, “Nonlinear Coupling between Evoked rCBF and BOLD Signals: A Simulation Study of Hemodynamic Responses,” NeuroImage, 14, 862–872 (2001). [CrossRef] [PubMed]
  28. Y. Zheng, J. Martindale, D. Johnston, M. Jones, J. Berwick, J. Mayhew, “A Model of the hemodynamic Response and Oxygen Delivery to Brain,” NeuroImage, 16, 617–637 (2002). [CrossRef] [PubMed]
  29. R. B. Buxton, K. Uludağ, D. J. Dubowitz, T. T. Liu, “Modeling the hemodynamic response to brain activation,” NeuroImage, 23, S220–S233 (2004). [CrossRef] [PubMed]
  30. K. Lu, J. W. Clark, F. H. Ghorbel, C. S. Robertson, D. L. Ware, J. B. Zwischenberger, A. Bidani, “Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model,” Am. J. Physiol. Heart. Circ. Physiol., 286, H584–H601 (2004). [CrossRef]
  31. R. K. Jain, “Determinants of tumor blood flow: a review,” Cancer Res., 48, 2641–2658 (1988). [PubMed]
  32. R. K. Jain, “Barriers to drug delivery in solid tumors,” Sci. Am., 271, 58–65 (1994). [CrossRef] [PubMed]
  33. R. Mazurchuk, R. Zhou, R. M. Straubinger, R. I. Chau, Z. Grossman, “Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response,” Magn. Reson. Imaging, 17, 537–548 (1999). [CrossRef] [PubMed]
  34. Y. Song, A. Constantinescu, R.P. Mason, “Dynamic breast tumor oximetery: the development of prosgnostic radiology,” Technology in Cancer Research & Treatment, 1, 1–8 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (266 KB)     
» Media 2: MPG (1762 KB)     
» Media 3: MPG (1643 KB)     
» Media 4: MPG (1539 KB)     
» Media 5: MPG (1539 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited