OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 12 — Jun. 13, 2005
  • pp: 4539–4553

Mode-locking of monolithic laser diodes incorporating coupled-resonator optical waveguides

Yang Liu, Zheng Wang, Minghui Han, Shanhui Fan, and Robert Dutton  »View Author Affiliations


Optics Express, Vol. 13, Issue 12, pp. 4539-4553 (2005)
http://dx.doi.org/10.1364/OPEX.13.004539


View Full Text Article

Enhanced HTML    Acrobat PDF (430 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the operational principle of mode-locking in monolithic semiconductor lasers incorporating coupled-resonator optical waveguides. The size of mode-locked lasers operating at tens of GHz repetition frequencies can be drastically reduced owing to the significantly decreased group velocity of light. The dynamics of such devices are analyzed numerically based on a coupled-oscillator model with the gain, loss, spontaneous emission, nearest-neighbor coupling and amplitude phase coupling (as described by the linewidth enhancement factor α) taken into account. It is demonstrated that active mode-locking can be achieved for moderate α parameter values. Simulations also indicate that large α parameters may destabilize the mode-locking behavior and result in irregular pulsations, which nevertheless can be effectively suppressed by incorporating detuning of individual cavity resonant frequencies in the device design.

© 2005 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Research Papers

History
Original Manuscript: March 3, 2005
Revised Manuscript: May 26, 2005
Published: June 13, 2005

Citation
Yang Liu, Zheng Wang, Minghui Han, Shanhui Fan, and Robert Dutton, "Mode-locking of monolithic laser diodes incorporating coupled-resonator optical waveguides," Opt. Express 13, 4539-4553 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4539


Sort:  Journal  |  Reset  

References

  1. G. A. Keeler, B. E. Nelson, D. Agarwal, and D. A. B. Miller, �??Skew and jitter removal using short optical pulses for optical interconnection,�?? IEEE Photonics Technology Letters 12, 714�??716 (2000). [CrossRef]
  2. E. A. De Souza, M. C. Nuss, W. H. Knox, and D. A. B. Miller, �??Wavelength-division multiplexing with femtosecond pulses,�?? Opt. Lett. 20, 1166�??1168 (1995). [CrossRef] [PubMed]
  3. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, �??Monolithic and multi-GigaHertz mode-locked semiconductor lasers: constructions, experiments, models and applications,�?? IEE Proc.-Optoelectron. 147, 251�??278 (2000). [CrossRef]
  4. A. E. Siegman, Lasers (University Science Books, Sausalito, CA, 1986).
  5. N. Stefanou and A. Modinos, �??Impurity bands in photonic insulators,�?? Phys. Rev. B 57, 12,127�??12,133 (1998). [CrossRef]
  6. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, �??Coupled-resonator optical waveguides: a proposal and analysis,�?? Opt. Lett. 24, 711�??713 (1999). [CrossRef]
  7. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, �??Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,�?? Phys. Rev. Lett. 87, 253,902 (2001). [CrossRef]
  8. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdre, and U. Oesterle, �??Miniband transmission in a photonic crystal coupled-resonator optical waveguide,�?? Opt. Lett. 26, 1019�??1021, (2001). [CrossRef]
  9. S. Mookherjea and A. Yariv, �??Optical pulse propagation in the tight-binding approximation,�?? Opt. Express 9, 91�??96 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-91.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-91.</a> [CrossRef] [PubMed]
  10. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, �??Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,�?? J. Opt. Soc. Am. B 19, 2052�??2059 (2002). [CrossRef]
  11. H. Altug and J. Vuckovic, �??Two-dimensional coupled photonic crystal resonator arrays,�?? Appl. Phys. Lett. 84, 161�??163 (2004). [CrossRef]
  12. S. Mookherjea, �??Semiconductor coupled-resonator optical waveguide laser,�?? Appl. Phys. Lett. 84, 3265�??7 (2004). [CrossRef]
  13. D. Botez, �??Monolithic phase-locked semiconductor laser arrays,�?? in Diode Laser Arrays, D. Botez and D. R. Scifres, ed., pp. 1�??67 (Cambridge University Press, New York, 1994). [CrossRef]
  14. S. S. Wang and H. G. Winful, �??Dynamics of phase-locked semiconductor laser arrays,�?? Appl. Phys. Lett. 52, 1774�??6 (1988). [CrossRef]
  15. H. G. Winful and S. S. Wang, �??Stability of phase locking in coupled semiconductor laser arrays,�?? Appl. Phys. Lett. 53, 1894-6 (1988). [CrossRef]
  16. H. G. Winful and R. K. Defreez, �??Dynamics of coherent semiconductor laser arrays,�?? in Diode Laser Arrays, D. Botez and D. R. Scifres, ed., pp. 226�??253 (Cambridge University Press, New York, 1994). [CrossRef]
  17. G. A. Wilson, R. K. DeFreez, and H. G. Winful, �??Modulation of phased-array semiconductor lasers at K-band frequencies,�?? IEEE J. Quantum Electron. 27, 1696-1704, 1991. [CrossRef]
  18. H. G.Winful, S. Allen and L. Rahman, �??Validity of the coupled-oscillator model for laser-array dynamics,�?? Opt. Lett. 18, 1810-2, 1993 [CrossRef] [PubMed]
  19. P. Ru, K. Jakobsen, J. V. Moloney, and R. A. Indik, �??Generalized coupled-mode model for the multistripe index-guided laser arrays,�?? J. Opt. Soc. Am. B 10, 507-515, 1993 [CrossRef]
  20. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173�??190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.</a> [CrossRef] [PubMed]
  21. R. .J. Lang and A. Yariv, �??Local-field rate equations for coupled optical resonators,�?? Phys. Rev. A 34, 2038-2043, 1986. [CrossRef] [PubMed]
  22. R. J. Lang and A. Yariv, �??An exact formulation of coupled-mode theory for coupled-cavity lasers,�?? IEEE J. Quantum Electron. QE-24, 66�??72, 1988. [CrossRef]
  23. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Ch. 10 (Saunders College Publishing, 1976).
  24. C. H. Henry, �??Line Broadening of Semiconductor Lasers,�?? in Coherence, Amplification, and Quantum Effects in Semiconductor Lasers, Y. Yamamoto, ed., pp. 5�??76 (Wiley, New York, 1991).
  25. H. A. Haus, �??Mode-locking of lasers,�?? IEEE Journal of Selected Topics in Quantum Electronics 6, 1173�??1185 (2000). [CrossRef]
  26. L. A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, New York, 1995).
  27. D. Marcuse, �??Computer simulation of laser photon fluctuations: theory of single-cavity laser,�?? IEEE J. Quantum Electron. QE-20, 1139�??1148 (1984). [CrossRef]
  28. Y. Liu, K. D. Choquette, and K. Hess, �??The electrical turn-on characteristics of vertical-cavity surface-emitting lasers,�?? Appl. Phys. Lett. 83, 4104�??6 (2003). [CrossRef]
  29. J. Vuckovic, O. Painter, Y. Xu, A. Yariv, and A. Scherer, �??Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,�?? IEEE J. Quantum Electron. 35, 1168�??1175 (1999). [CrossRef]
  30. Y. Yu, G. Giuliani, and S. Donati, �??Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,�?? IEEE Photonic Technology Letters 16, 990-992 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited