OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 12 — Jun. 13, 2005
  • pp: 4589–4593

Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications

Yujun Deng, Fei Lu, and Wayne H. Knox  »View Author Affiliations


Optics Express, Vol. 13, Issue 12, pp. 4589-4593 (2005)
http://dx.doi.org/10.1364/OPEX.13.004589


View Full Text Article

Enhanced HTML    Acrobat PDF (141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A difference frequency generation scheme that is potentially applicable to self-stabilization of the carrier-envelope-offset phase is demonstrated for the first time with a fiber-laser-based system. By taking advantage of the unique dispersion of the photonic-crystal-fibers, short pulses at 615 nm can be efficiently and selectively generated with low noise via Cherenkov-radiation in a 23-mm-PCF with a mode-locked Yb-fiber laser. Difference frequency generation between the 615-nm pulses and the 1030-nm output pulses from the Yb-fiber amplifier produces pulses at ~1530 nm, which can be readily amplified by Er-doped-fiber amplifiers. This scheme may provide a new route to a fiber-laser-based CEO-phase-stabilized source.

© 2005 Optical Society of America

OCIS Codes
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7140) Ultrafast optics : Ultrafast processes in fibers

ToC Category:
Research Papers

History
Original Manuscript: May 16, 2005
Revised Manuscript: May 31, 2005
Published: June 13, 2005

Citation
Yujun Deng, Fei Lu, and Wayne Knox, "Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications," Opt. Express 13, 4589-4593 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4589


Sort:  Journal  |  Reset  

References

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency syntheses,�?? Science 288, 635-639 (2000). [CrossRef] [PubMed]
  2. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, �??Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,�?? Opt. Lett. 29, 250-252 (2004) [CrossRef] [PubMed]
  3. H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, �??Phase-locked carrier-envelope-offset frequency at 1560 nm,�?? Opt. Express 12, 770-775 (2004), <a href=�??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-770�??> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-770</a> [CrossRef] [PubMed]
  4. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, �??Frequency metrology with a turnkey all-fiber system,�?? Opt. Lett. 29, 2467-2469 (2004). [CrossRef] [PubMed]
  5. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, �??Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,�?? Appl. Phys. B 69, 327-332 (1999). [CrossRef]
  6. A. Baltuška, T. Fuji, and T. Kobayashi, �??Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,�?? Phys. Rev. Lett. 88, 133901 (2002). [CrossRef] [PubMed]
  7. X. Fang and T. Kobayashi, �??Self-stabilization of the carrier-envelope phase of an optical parametric amplifier verified with a photonic crystal fiber,�?? Opt. Lett. 29, 1282-1284 (2004). [CrossRef] [PubMed]
  8. T. Fuji, A. Apolonski, and F. Krausz, �??Self-stabilization of carrier-envelope offset phase by use of difference-frequency generation,�?? Opt. Lett. 29, 632-634 (2004). [CrossRef] [PubMed]
  9. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,�?? Phys. Rev. Lett. 88, 173901 (2002). [CrossRef] [PubMed]
  10. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, �??Soliton self-frequency shift cancellation in photonic crystal fibers,�?? Science 301, 1705-1708 (2003). [CrossRef] [PubMed]
  11. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, �??Dispersive wave generation by solitons in microstructured optical fibers,�?? Opt. Express 12, 124-135 (2004), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-124�??> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-124</a>. [CrossRef] [PubMed]
  12. F. Lu, Y. Deng, and W. H. Knox, �??Broadband femtosecond visible pulse generation in dispersion-micromanaged holey fibers,�?? Opt. Lett. in press.
  13. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, �??Fundamental amplitude noise limitations to supercontinuum spectra generated in a micro structured fiber,�?? Appl. Phys. B 77, 269-277 (2003). [CrossRef]
  14. T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, �??Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,�?? Opt. Lett. 27, 445-447 (2002). [CrossRef]
  15. Y. Deng and W. H. Knox, �??Self-starting passive harmonic mode-locked femtosecond Yb-doped fiber laser at 1030 nm,�?? Opt. Lett. 29, 2121-2123 (2004). [CrossRef] [PubMed]
  16. K. Saitoh and M. Koshiba, �??Empirical relations for simple design of photonic crystal fibers,�?? Opt. Express 13, 267-274 (2005), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-267�??> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-267</a>. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited