OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 12 — Jun. 13, 2005
  • pp: 4629–4637

Four-wave mixing in silicon wire waveguides

Hiroshi Fukuda, Koji Yamada, Tetsufumi Shoji, Mitsutoshi Takahashi, Tai Tsuchizawa, Toshifumi Watanabe, Jun-ichi Takahashi, and Sei-ichi Itabashi  »View Author Affiliations

Optics Express, Vol. 13, Issue 12, pp. 4629-4637 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the observation of four-wave mixing phenomenon in a simple silicon wire waveguide at the optical powers normally employed in communications systems. The maximum conversion efficiency is about -35 dB in the case of a 1.58-cm-long silicon wire waveguide. The nonlinear refractive index coefficient is found to be 9×10-18 m2/W. This value is not negligible for dense wavelength division multiplexing components, because it predicts the possibility of large crosstalk. On the other hand, with longer waveguide lengths with smaller propagation loss, it would be possible to utilize just a simple silicon wire for practical wavelength conversion. We demonstrate the wavelength conversion for data rate of 10-Gbps using a 5.8-cm-long silicon wire. These characteristics are attributed to the extremely small core of silicon wire waveguides.

© 2005 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.4320) Optical devices : Nonlinear optical devices
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

Original Manuscript: April 5, 2005
Revised Manuscript: May 12, 2005
Published: June 13, 2005

Hiroshi Fukuda, Koji Yamada, Tetsufumi Shoji, Mitsutoshi Takahashi, Tai Tsuchizawa, Toshifumi Watanabe, Jun-ichi Takahashi, and Sei-ichi Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005)

Sort:  Journal  |  Reset  


  1. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, L.C Kimerling, �??Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,�?? Appl. Phys. Lett. 77, 1617 (2000). [CrossRef]
  2. A. Sakai, G. Hara, T. Baba, �??Propagation Characteristics of Ultrahigh-�? Optical Waveguide,�?? Jpn. J. Appl. Phys. 40, L384 (2001). [CrossRef]
  3. A. Sakai, T. Fukazawa, T. Baba, �??Low Loss Ultra-Small Branches in a Silicon Photonic WireWaveguide,�?? IEICE Trans. Electron. E85-C, 1033 (2002).
  4. T. Shoji, T. Tsuchizawa, T.Watanabe, K. Yamada, H. Morita, �??Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers�??, Electron. Lett. 38, 1669 (2002). [CrossRef]
  5. K. Yamada, T. Shoji, T. Tsuchizawa, T.Watanabe, J. Takahashi, S. Itabashi, �??Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,�?? Opt. Lett. 28, 1663 (2003). [CrossRef] [PubMed]
  6. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H.Fukuda, S. Itabashi, H. Morita, �??Microphotonics Devices Based on Silicon Wire Waveguiding System,�?? IEICE Trans. Electron. E87-C, 351 (2004).
  7. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, H. Morita, �??Microphotonics Devices Based on Silicon Micro-Fabrication Technology,�?? IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005). [CrossRef]
  8. Govind P. Agrawad, �??NONLINEAR FIBER OPTICS, Second Edition,�?? Academic Press, (1995).
  9. O. Boyraz, B. Jalali, �??Demonstration of a silicon Raman laser,�?? Opt. Express 12, 5269 (2004). [CrossRef] [PubMed]
  10. O. Boyraz, B. Jalali, �??Demonstration of directly modulated silicon Raman laser,�?? Opt. Express 13, 796 (2005). [CrossRef] [PubMed]
  11. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, �??A continuous-wave Raman silicon laser,�?? Nature 433, 725 (2005). [CrossRef] [PubMed]
  12. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, M. Paniccia, �??An all-silicon Raman laser,�?? Nature 433, 292 (2005). [CrossRef] [PubMed]
  13. R. Claps, D. Dimitropoulos, Y. Han, B. Jalali, �??Observation of Raman emission in silicon waveguides at 1.54 μm,�?? Opt. Express 10, 1305 (2002). [PubMed]
  14. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, �??Raman amplification in ultrasmall silicon-on-insulator wire waveguides,�?? Opt. Express 12, 3713 (2004). [CrossRef] [PubMed]
  15. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, �??A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,�?? Nature 427, 615 (2004). [CrossRef] [PubMed]
  16. C. A. Barrios, V. R. de Almeida, M. Lipson, �??Low-Power-Consumption Short-Length and High-Modulation-Depth Silicon Electrooptic Modulator�??, IEEE J. Lightwave Thechnol. 21, 1089 (2003). [CrossRef]
  17. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, �??Anti-Stokes Raman conversion in silicon waveguides,�?? Opt. Express 11, 2862 (2003). [CrossRef] [PubMed]
  18. S. V. Chernikov, J. R. Taylor, �??Measurement of normalization factor of n2 for random polarization in optical fibers,�?? Opt. Lett. 21, 1559 (1996). [CrossRef] [PubMed]
  19. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, O. A. Levring, �??Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm,�?? Opt. Lett. 21, 1966 (1996). [CrossRef] [PubMed]
  20. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,�?? Appl. Phys. Lett. 80, 416 (2002). [CrossRef]
  21. M. Grimsditch, M. Cardona, �??Absolute Cross-Section for Raman Scattering by Phonons in Silicon,�?? Phys. Stat. Sol. B102, 155 (1980).
  22. T. J. Morgan, R. S. Tucker, J. P. R. Lacey, �??All-Optical Wavelength Translation Over 80 nm at 2.5 Gb/s Using Four-Wave Mixing in a Semiconductor Optical Amplifier,�?? IEEE Photo. Technol. Lett. 11, 982 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited