OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 12 — Jun. 13, 2005
  • pp: 4699–4707

Optically triggered Q-switched photonic crystal laser

Brett Maune, Jeremy Witzens, Thomas Baehr-Jones, Michael Kolodrubetz, Harry Atwater, Axel Scherer, Rainer Hagen, and Yueming Qiu  »View Author Affiliations

Optics Express, Vol. 13, Issue 12, pp. 4699-4707 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (661 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optically triggered liquid crystal infiltrated Q-switched photonic crystal laser is demonstrated. A photonic crystal laser cavity was designed and fabricated to support two orthogonally polarized high-Q cavity modes after liquid crystal infiltration. By controlling the liquid crystal orientation via a layer of photoaddressable polymer and a writing laser, the photonic crystal lasing mode can be reversibly switched between the two modes which also switches the laser’s emission polarization and wavelength. The creation of the Q-switched laser demonstrates the benefits of customizing photonic crystal cavities to maximally synergize with an infiltrated material and illustrates the potential of integrating semiconductor nanophotonics with optical materials.

© 2005 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Research Papers

Original Manuscript: May 16, 2005
Revised Manuscript: June 3, 2005
Published: June 13, 2005

Brett Maune, Jeremy Witzens, Thomas Baehr-Jones, Michael Kolodrubetz, Harry Atwater, Axel Scherer, Rainer Hagen, and Yueming Qiu, "Optically triggered Q-switched photonic crystal laser," Opt. Express 13, 4699-4707 (2005)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062, (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489, (1987). [CrossRef] [PubMed]
  3. Y. Akahane, T. Asano, B. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944-947, (2003). [CrossRef] [PubMed]
  4. S. Noda, A. Chutinan, and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608-610, (2000). [CrossRef] [PubMed]
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. Kim, �??Two-dimensional photonic band-gap defect mode laser,�?? Science 284, 1819-1821, (1999). [CrossRef] [PubMed]
  6. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, �??Design of photonic crystal microcavities for cavity QED,�?? Phys. Rev. E 65, 016608-1-11, (2002).
  7. B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, �??Feasibility of detecting single atoms using photonic bandgap cavities,�?? Nanotechnology 15, S556-S561, (2004). [CrossRef]
  8. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, �??Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,�?? Science 308, 1296-1298, (2005). [CrossRef] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, �??Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,�?? Nature 432, 200-203, (2004). [CrossRef] [PubMed]
  10. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, �??Deterministic coupling of single quantum dots to single nanocavity modes,�?? Science 308, 1158-1161, (2005). [CrossRef] [PubMed]
  11. K. Busch, and S. John, �??Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,�?? Phys. Rev. Lett. 83, 967-970, (1999). [CrossRef]
  12. E. Yablonovitch, �??Liquid versus photonic crystals,�?? Nature 401, 539-541, (1999). [CrossRef]
  13. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, �??Tunable two-dimensional photonic crystals using liquid-crystal infiltration,�?? Phys. Rev. B 61, R2389-R2392, (2000). [CrossRef]
  14. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, �??Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,�?? Appl. Phys. Lett. 82, 2767-2769, (2003). [CrossRef]
  15. D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, �??Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,�?? Phys. Rev. Lett. 86, 4052-4055, (2001). [CrossRef] [PubMed]
  16. Y. Shimoda, M. Ozaki, and K. Yoshino, �??Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,�?? Appl. Phys. Lett. 79, 3627-3629, (2001). [CrossRef]
  17. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, �??Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,�?? Appl. Phys. Lett. 82, 3593-3595, (2003). [CrossRef]
  18. R. Hagen, and T. Bieringer, �??Photoaddressable polymers for optical data storage,�?? Adv. Mater. 13, 1805-1810, (2001). [CrossRef]
  19. M. Loncar, A. Scherer, and Y. Qiu, �??Photonic crystal laser sources for chemical detection,�?? Appl. Phys. Lett. 82, 4648-4650, (2003). [CrossRef]
  20. B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, �??Liquid-crystal electric tuning of a photonic crystal laser,�?? Appl. Phys. Lett. 85, 360-362, (2004). [CrossRef]
  21. J. T. Ho, J. T. �??Light scattering and quasielastic spectroscopy,�?? in Liquid Crystals, S. Kumar, ed. (Cambridge University Press, Cambridge UK, 2001), pp. 197-239.
  22. By infiltrating the lasers with refractive index calibrated fluids and comparing the lasing redshift with that of the LC infiltrated lasers, we estimated the IR refractive indices of the LC to be no = 1.47 and ne = 1.58. This analysis assumed the LC spontaneously arranged itself randomly within the PC.
  23. S. Lucht, D. Neher, T. Miteva, G. Nelles, A. Yasuda, R. Hagen, and S. Kostromine, �??Photoaddressable polymers for liquid crystal alignment,�?? Liq. Cryst. 30, 337-344, (2003). [CrossRef]
  24. K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, �??Experimental demonstration of a high-quality factor photonic crystal microcavity,�?? Appl. Phys. Lett. 83, 1915-1917, (2003). [CrossRef]
  25. The simulated cavity Qs are for PCs with an isotropic ambient refractive index. Simulations involving anisotropic ambient refractive indices that mimic the infiltrated LC (in particular asymmetric cladding/hole layer configurations) yield lower Qs [26].
  26. C. Kim, W. Kim, A. Stapleton, J. Cao, J. O�??Brien, P. Dapkus, �??Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,�?? J. Opt. Soc. Am. B 19, 1777-1781, (2002). [CrossRef]
  27. M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, �??Low-threshold photonic crystal laser,�?? Appl. Phys. Lett. 81, 2680-2682, (2002). [CrossRef]
  28. G. S. Hartley, �??The cis-form of azobenzene,�?? Nature 140, 281 (1937). [CrossRef]
  29. B. Lachut, S. Maier, H. Atwater, M. Dood, A. Polman, R. Hagen, and S. Kostromine, �??Large spectral birefringence in photoaddressable polymer films,�?? Adv. Mater. 16, 1746-1750, (2004). [CrossRef]
  30. V. Cimrová, D. Neher, S. Kostromine, and T. Bieringer, �??Optical anisotropy in films of photoaddressable polymers,�?? Macromolecules 32, 8496-8503, (1999). [CrossRef]
  31. Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, �??Photoaddressable polymers for rewritable optical disk systems,�?? Jpn. J. Appl. Phys. 40, 1613-1618, (2001). [CrossRef]
  32. M. Eich and J. H. Wendorff, �??Erasable holograms in polymeric liquid crystals,�?? Makromol. Chem., Rapid Commun. 8, 467-471, (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited