OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 12 — Jun. 13, 2005
  • pp: 4792–4811

Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina

Yan Zhang, Jungtae Rha, Ravi S. Jonnal, and Donald T. Miller  »View Author Affiliations


Optics Express, Vol. 13, Issue 12, pp. 4792-4811 (2005)
http://dx.doi.org/10.1364/OPEX.13.004792


View Full Text Article

Enhanced HTML    Acrobat PDF (912 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although optical coherence tomography (OCT) can axially resolve and detect reflections from individual cells, there are no reports of imaging cells in the living human retina using OCT. To supplement the axial resolution and sensitivity of OCT with the necessary lateral resolution and speed, we developed a novel spectral domain OCT (SD-OCT) camera based on a free-space parallel illumination architecture and equipped with adaptive optics (AO). Conventional flood illumination, also with AO, was integrated into the camera and provided confirmation of the focus position in the retina with an accuracy of ±10.3 µm. Short bursts of narrow B-scans (100×560 µm) of the living retina were subsequently acquired at 500 Hz during dynamic compensation (up to 14 Hz) that successfully corrected the most significant ocular aberrations across a dilated 6 mm pupil. Camera sensitivity (up to 94 dB) was sufficient for observing reflections from essentially all neural layers of the retina. Signal-to-noise of the detected reflection from the photoreceptor layer was highly sensitive to the level of ocular aberrations and defocus with changes of 11.4 and 13.1 dB (single pass) observed when the ocular aberrations (astigmatism, 3rd order and higher) were corrected and when the focus was shifted by 200 µm (0.54 diopters) in the retina, respectively. The 3D resolution of the B-scans (3.0×3.0×5.7 µm) is the highest reported to date in the living human eye and was sufficient to observe the interface between the inner and outer segments of individual photoreceptor cells, resolved in both lateral and axial dimensions. However, high contrast speckle, which is intrinsic to OCT, was present throughout the AO parallel SD-OCT B-scans and obstructed correlating retinal reflections to cell-sized retinal structures.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Research Papers

History
Original Manuscript: May 9, 2005
Revised Manuscript: June 8, 2005
Published: June 13, 2005

Citation
Yan Zhang, Jungtae Rha, Ravi Jonnal, and Donald Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4792


Sort:  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, �??Ultrahighresolution ophthalmic optical coherence tomography,�?? Nature Med. 7, 502-507 (2001). [CrossRef] [PubMed]
  3. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, �??Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,�?? Opt. Express 12, 2435-2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>. [CrossRef] [PubMed]
  4. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, �??Ultrahighresolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,�?? Opt. Express 12, 2404-2421 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>. [CrossRef] [PubMed]
  5. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, �??Ultrahigh resolution Fourier domain optical coherence tomography,�?? Opt. Express 12, 2156-2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a>. [CrossRef] [PubMed]
  6. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, �??Statistical variation of aberration structure and image quality in a normal population of healthy eyes,�?? J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef]
  7. R. K. Tyson, Principles of Adaptive Optics (Academic Press, New York, 1998).
  8. J. Liang, D. R. Williams, and D. T. Miller, �??Supernormal vision and high resolution retinal imaging through adaptive optics,�?? J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  9. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, �??Improvement in retinal image quality with dynamic correction of the eye�??s aberrations,�?? Opt. Express 8, 631-643 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631</a>. [CrossRef] [PubMed]
  10. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, �??Adaptive optics scanning laser ophthalmoscopy,�?? Opt. Express 10, 405-412 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405</a>. [PubMed]
  11. D. T. Miller, J. Qu, R. S. Jonnal and K. Thorn, �??Coherence gating and adaptive optics in the eye�??, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE 4956, 65-72 (2003).
  12. N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, �??Small table-top adaptive optical systems for human retinal imaging�??, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, R. K. Tyson, eds., Proc. SPIE 4825, 99-108 (2002).
  13. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, �??Towards wide-field retinal imaging with adaptive optics,�?? Opt. Commun. 230, 225-238 (2004). [CrossRef]
  14. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, �??Adaptive-optics ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  15. B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, �??Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,�?? Opt. Express 13, 1131-1137 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1131">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1131</a>. [CrossRef] [PubMed]
  16. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, �??Single shot retinal imaging with AO spectral OCT,�?? in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds. Proc. SPIE 5690, 548-555 (2005).
  17. ANSI, American National Standard for the Safe Use of Lasers, ANSI Z136.1 (Laser Institute of America, Orlando, FL, 2000).
  18. K. E. Thorn, J. Qu, R. J. Jonnal, and D. T. Miller, �??Adaptive optics flood-illuminated camera for high speed retinal imaging,�?? Invest. Ophthalmol. Vis. Sci. 44, E-Abstract 1002 (2003).
  19. J. Hecht, Understanding Fiber Optics (Prentice Hall, New Jersey, 1998).
  20. W. Jiang and H. Li, �??Hartmann-Shack wavefront sensing and control algorithm,�?? in Adaptive Optics and Optical Structures, J. J. Schulte-in-den-Baeumen and R. K. Tyson, eds., Proc. SPIE 1271, 82-93 (1990).
  21. J. Liang, B. Grimm, S. Goelz, and J. Bille, "Objective measurement of the wave aberrations of the human eye using a Hartmann-Shack wavefront sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  22. D. Malacara, Optical Shop Testing 2nd ed. (John Wiley & Sons, New York, 1992), 112-113.
  23. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, �??Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,�?? J. Vis. 4, 329-351 (2004). [PubMed]
  24. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, �??Performance of Fourier domain versus time domain optical coherence tomography,�?? Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>. [CrossRef] [PubMed]
  25. B. A. Bower, M. Zhao, Y. Wang, A. Chu, R. J. Zawadski, M. V. Sarunic, and J. A. Izatt, �??Rapid volumetric imaging of the human retina in vivo using a low-cost, spectral domain optical coherence tomography system,�?? in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE 5690, 79-84 (1995).
  26. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, �??Human photoreceptor topography,�?? J. Comparitive Neurology 292, 497-523 (1990). [CrossRef]
  27. D. R. Williams, �??Topography of the foveal cone mosaic in the living human eye,�?? Vision Res. 28, 433-454 (1988). [CrossRef] [PubMed]
  28. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, �??In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,�?? Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  29. B. Sander, M Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, �??Enhanced optical coherence tomography imaging by multiple scan averaging,�?? Br. J. Ophthalmol. 89, 207-212 (2004). [CrossRef]
  30. L. A. Riggs and J. C. Armington, J.C., �??Motions of the retinal image during fixation,�?? J. Opt. Soc. Am. 44, 315-321 (1954). [CrossRef] [PubMed]
  31. D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, �??Images of cone photoreceptors in the living human eye,�?? Vision Res. 36, 1067-1079 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (1732 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited