OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 13 — Jun. 27, 2005
  • pp: 4818–4827

FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice

W. M. Saj  »View Author Affiliations

Optics Express, Vol. 13, Issue 13, pp. 4818-4827 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1334 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a 2D plasmon waveguide in the form of rows of silver nanorods in hexagonal lattice, that may be used for creating a medium with novel effective electromagnetic properties. Transport of energy due to surface plasmon coupling is investigated with Finite Difference Time Domain method for visible range wavelengths from 400 to 750 nm. For 500 to 750 nm range two-mode nature of the waveguide is shown in simulations. Attenuation factors and group velocities are calculated for transmitted modes.

© 2005 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Research Papers

Original Manuscript: April 14, 2005
Revised Manuscript: June 6, 2005
Published: June 27, 2005

W. Saj, "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express 13, 4818-4827 (2005)

Sort:  Journal  |  Reset  


  1. G. Shvets, �??Photonic approach to making a material with a negative index of refraction,�?? Phys. Rev. B 67, 035109 (2003). [CrossRef]
  2. J. T. Shen, P. B. Catrysse, and S. Fan, �??Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,�?? Phys. Rev. Lett. 94, 197401 (2005). [CrossRef] [PubMed]
  3. M. Notomi, �??Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,�?? Phys. Rev. B 62, 10, 696 (2000). [CrossRef]
  4. H. Raether, Surface Plasmons (Springer, Berlin 1988).
  5. C. Sönnichsen, Plasmons in metal nanostructures, PhD Thesis (Ludwig-Maximilians-Universtät München, München, 2001).
  6. W. L. Barnes, A. Dereux and T. W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature 424, 824 �??830 (2003). [CrossRef] [PubMed]
  7. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn and J. P. Goudonnet, �??Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,�?? Phys. Rev. B 60, 9061�?? 9068 (1999). [CrossRef]
  8. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, �??Surface plasmon propagation in microscale metal stripes,�?? Appl. Phys. Lett. 79, 51�??53 (2001). [CrossRef]
  9. T. Yatsui, M. Kourogi, and M. Ohtsu , �??Plasmon waveguide for optical far/near-field conversion,�?? Appl. Phys. Lett. 79, 4583�??4585 (2001). [CrossRef]
  10. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, �??Geometries and materials for subwavelength surface plasmon modes,�?? J. Opt. Soc. Am. A 21, 2442�??2446 (2004). [CrossRef]
  11. K. Tanaka, M. Tanaka, and T. Sugiyama, �??Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,�?? Opt. Express 13, 256�??266 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-256">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-256</a> [CrossRef] [PubMed]
  12. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, �??Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,�?? Opt. Express 13, 977�??984 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-977</a> [CrossRef] [PubMed]
  13. D. F. P. Pile, D. K. Gramotnev, �??Channel plasmon-polariton in a triangular groove on a metal surface,�?? Optics Letters 29, 1069�??1071 (2004). [CrossRef] [PubMed]
  14. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, �??Electromagnetic energy transport via linear chains of silver nanoparticles,�?? Opt. Lett. 23, 1331�??1333 (1998). [CrossRef]
  15. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, �??Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,�?? Phys. Rev. B 62, R16356�??R16359 (2000). [CrossRef]
  16. S. A. Maier , Guiding of electromagnetic energy in subwavelength periodic metal structures, PhD Thesis, (California Institut of Technology, Pasadena 2003).
  17. D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres, �??Nanopillars photonic crystal waveguides,�?? Opt. Express 12, 617�??622 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-617">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-617</a> [CrossRef] [PubMed]
  18. F. I. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, �??Waveguiding through a two-dimensional metallic photonic crystal,�?? J. Microscopy 213, 144�??148 (2004). [CrossRef]
  19. J. Kottmann and O. J. F. Martin, �??Plasmon resonant coupling in metallic nanowires,�?? Opt. Express 8, 655�??663 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-12-655">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-12-655 [CrossRef]
  20. P. Johnson and R. Christy, �??Optical Constants of the Noble Metals,�?? Phys. Rev. B 6, 4370�??4379 (1972). [CrossRef]
  21. A.Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, MA 2000).
  22. W. M. Saj, Application of Finite Difference Time Domain Method to Modeling of Photonic Crystal Fibers, Msc Thesis (in Polish) (Warsaw University, Warsaw 2003).
  23. C. T. Chan, Q. L. Yu, and K. M. Ho, �??Order-N spectral method for electromagnetic waves,�?? Phys. Rev. B 51, 16635�??16642 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1392 KB)     
» Media 2: AVI (1600 KB)     
» Media 3: AVI (1870 KB)     
» Media 4: AVI (2518 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited