OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 13 — Jun. 27, 2005
  • pp: 4828–4842

Determination of reduced scattering coefficient of biological tissue from a needle-like probe

Maureen Johns, Cole A. Giller, Dwight C. German, and Hanli Liu  »View Author Affiliations


Optics Express, Vol. 13, Issue 13, pp. 4828-4842 (2005)
http://dx.doi.org/10.1364/OPEX.13.004828


View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Detection of interactions between light and tissue can be used to characterize the optical properties of the tissue. The purpose of this paper is to develop an algorithm that determines the reduced scattering coefficient (µs) of tissues from a single optical reflectance spectrum measured with a small source-detector separation. A qualitative relationship between µs and optical reflectance was developed using both Monte Carlo simulations and empirical tissue calibrations for each of two fiber optic probes with 400-µm and 100-µm fibers. Optical reflectance measurements, using a standard frequency-domain oximeter, were performed to validate the calculated µs values. The algorithm was useful for determining µs values of in vivo human fingers and rat brain tissues.

© 2005 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.4210) Scattering : Multiple scattering

ToC Category:
Research Papers

History
Original Manuscript: April 22, 2005
Revised Manuscript: June 7, 2005
Published: June 27, 2005

Citation
Maureen Johns, Cole Giller, Dwight German, and Hanli Liu, "Determination of reduced scattering coefficient of biological tissue from a needle-like probe," Opt. Express 13, 4828-4842 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-13-4828


Sort:  Journal  |  Reset  

References

  1. H.R. Eggert and V. Blazek, �??Optical Properties of Human Brain Tissue, Meninges, and Brain Tumors in the Spectral Range of 200 to 900 nm,�?? Neurosurg. 21, 459-464 (1987). [CrossRef]
  2. M. Johns, C.A. Giller and H. Liu, �??Computational and In Vivo Investigation of Optical Reflectance from Human Brain to Assist Neurosurgery,�?? J. Biomed. Opt. 3, 437-445 (1998). [CrossRef]
  3. G. Zonios, L.T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam and M.S. Feld, �??Diffuse Reflectance Spectroscopy of Human Adenomatous Colon Polyps In Vivo,�?? Appl. Opt. 38, 6628-6637 (1999). [CrossRef]
  4. J.R. Mourant, I.J. Bigio, J. Boyer, T.M. Johnson, J. Lacey, A.G. Bohorhoush and M. Mellow, �??Elastic Scattering Spectroscopy as a Diagnostic Tool for Differentiating Pathologies in the Gastrointestinal Tract: Preliminary Testing,�?? J. Biomed. Opt. 1, 192-199 (1996). [CrossRef]
  5. A.M.K. Nilsson, C. Sturesson, D.L. Liu and S. Andersson-Engels, �??Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,�?? Appl. Opt. 37, 1256-1267 (1998). [CrossRef]
  6. J.S. Dam, T. Dalgaard, P.E. Fabricius and S. Andersson-Engels, �??Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,�?? Appl. Opt. 39, 1202-1209 (2000). [CrossRef]
  7. A.M.K. Nilsson, R. Berg and S. Andersson-Engels, �??Measurements of the optical properties of tissue in conjunction with photodynamic therapy,�?? Appl. Opt. 34, 4609-4619 (1995). [CrossRef] [PubMed]
  8. S.-P. Lin, L. Wang, S.L. Jacques, and F.K. Tittel, �??Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,�?? Appl. Opt. 36, 136-143 (1997). [CrossRef] [PubMed]
  9. F.Bevilacqua, D.Piguet,P. marguet, J.D. Gross, B.J. Tromberg, and C. Depeursinge, �??In vivo local determination of tissue optical properties : applications to human brain,�?? Appl. Opt. 38, 4939-4950 (1999). [CrossRef]
  10. A. Amelink, A.P. van den Heuvel, W.J. de Wolf, D.J. Robinson, and H.J. Sterenborg, �??Monitoring PDT by means of superficial reflectance spectroscopy,�?? J. Photochem. Photobiol. B 79, 243-251 (2005). [CrossRef] [PubMed]
  11. C.A. Giller, H. Liu, P. P. Gurnani, S. Victor, U. Yazdani, and D. C. German, �??Validation of a Near-Infrared Probe for Detection of Thin Intracranial White Matter Structures,�?? J. Neurosurg. 98, 1299-1306 (2003). [CrossRef] [PubMed]
  12. C.A. Giller, M. Johns and H. Liu, �??Use of an intracranial near-infrared probe for localization during stereotactic surgery for movement disorders,�?? J. Neurosurg. 93, 498-505 (2000). [CrossRef] [PubMed]
  13. F. Bevilacqua and C. Depeursinge, �??Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,�?? J. Opt. Soc. Am. 16, 2935-2945 (1999). [CrossRef]
  14. J. S. Dam, C. B. Pedersen, T Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, �??Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,�?? Appl. Opt. 40, 1155-1164 (2001). [CrossRef]
  15. L.H. Wang, S.L. Jacques, and L-Q Zheng, �??MCML-Monte Carlo modeling of photon transport in multi-layered tissues,�?? Comp. Meth. Prog. Biomed. 47, 131-146 (1995). [CrossRef]
  16. L.H. Wang, S.L. Jacques, and L-Q Zheng, �??CONV-Convolution for responses to a finite diameter photon beam incident on multi-layered tissues,�?? Comp. Meth. Prog. Biomed. 54, 141-150 (1997). [CrossRef]
  17. <a href="http://oilab.tamu.edu/mc.html">http://oilab.tamu.edu/mc.html</a>.
  18. A. Kienle, L. Lilge, M.S. Patterson, R. HIbst, R. Steiner and B.C. Wilson, �??Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,�?? Appl. Opt. 35, 2304-2314 (1996). [CrossRef] [PubMed]
  19. F.A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic Press, San Diego, 1990), p.62.
  20. W-F Cheong, S.A. Prahl and A.J. Welch, �??A Review of the Optical Properties of Biological Tissues,�?? IEEE J. of Quan. Elec. 26, 2166-2185 (1990). [CrossRef]
  21. P. van der Zee, M. Essenpreis, and D.T. Delpy, �??Optical properties of brain tissue,�?? Proc. SPIE 1888, 454-465, (1993). [CrossRef]
  22. P. Gurnani, �??Near Infrared Spectroscopic Measurement of Human and Animal Brain Structures,�?? Master Thesis, The University of Texas at Arlington, Arlington, TX, May, 2003.
  23. <a href="http://www.iss.com/Products/oxiplex.html">http://www.iss.com/Products/oxiplex.html</a>.
  24. Z. Qian, S. Victor, Y. Gu, C.A. Giller, and H. Liu, �?? �??Look-Ahead Distance�?? of a fiber probe used to assist neurosurgery: phantom and Monte Carlo study,�?? Opt. Express 11 1844-1855, (2003). [CrossRef] [PubMed]
  25. M. Johns, C.A. Giller, and H. Liu, �??Determination of hemoglobin saturation in blood-perfused tissues using reflectance spectroscopy with small source-detector separations,�?? Appl. Spectrosc. 55, 1686-1694 (2001). [CrossRef]
  26. M. Solonenko, R. Cheung, T.M. Busch, A. Kachur, G.M. Griffin, T. Vulcan, T.C. Zhu, H.W. Wang, S.M. Hahn, and A.G. Yodh, �??In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,�?? Phys. Med. Biol. 47, 857-73 (2002). [PubMed]
  27. G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates, Academic Press Inc., 4th edition, London, (1998).
  28. M. Johns, �??Optical properties of living tissues determined in vivo using a thin fiber optic probe,�?? Ph.D. Dissertation, The University of Texas at Arlington, Arlington, TX, December, (2003).
  29. A.E. Cerussi, A.J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Bulter, R.F. Holcombe and B.J. Tromberg, �??Sources of Absorption and Scattering Contrast for Near-Infrared Optical Mammography,�?? Acad Radiol. 8, 211-218 (2001). [CrossRef] [PubMed]
  30. T. Durduran, R. Choe, J.P. Culver, L. Zubkov, M.J. Holboke, J. Giammarco, B. Chance and A.G. Yodh, �??Bulk optical properties of healthy female breast tissue,�?? Phys. Med. Biol. 47, 2847-2861 (2002). [CrossRef] [PubMed]
  31. H. Eggert, V. Blazek, �??Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm,�?? Neurosurgery 21, 459-464, (1987). [CrossRef] [PubMed]
  32. H. Schwarzmaier, A. Yaroslavsky, I. Yaroslavsky, G. Thomas, K. Thomas, U. Frank, P. Schulze, R. Schober, �??Optical properties of native and coagulated human brain structures,�?? Proc. SPIE 2970, 492-499 (1997). [CrossRef]
  33. H. Shangguan, S.A. Prahl, S.L. Jacques and L.W. Casperson, �??Pressure effects on soft tissues monitored by changes in tissue optical properties,�?? in Laser-Tissue Interaction IX, S.L. Jacques Ed., Proc. SPIE 3254, 366-371 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited