OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 13 — Jun. 27, 2005
  • pp: 4862–4868

High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide

Lu Ming, Corin B. E. Gawith, Katia Gallo, Martin V. O’Connor, Gregory D. Emmerson, and Peter G. R. Smith  »View Author Affiliations

Optics Express, Vol. 13, Issue 13, pp. 4862-4868 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (654 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a modified technique for the fabrication of zinc-diffused channel waveguides using z-cut electric-field periodically poled LiNbO3. Unlike previous work, the diffusion was carried out using metallic zinc at atmospheric pressure. By optimizing the thermal diffusion parameters, channel waveguides that preserve the existing periodically poled domain structures, support both TE and TM modes, and enhance photorefractive damage resistance were obtained. Nonlinear characterisation of the channel waveguides was investigated via second harmonic generation of a 1552nm laser with a maximum conversion efficiency of 59%W-1cm-2 at 14.6°C. Using a pulsed source a second harmonic conversion efficiency of 81% was achieved.

© 2005 Optical Society of America

OCIS Codes
(160.3730) Materials : Lithium niobate
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Research Papers

Original Manuscript: April 29, 2005
Revised Manuscript: June 3, 2005
Published: June 27, 2005

Lu Ming, Corin Gawith, Katia Gallo, Martin O'Connor, Gregory Emmerson, and Peter Smith, "High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide," Opt. Express 13, 4862-4868 (2005)

Sort:  Journal  |  Reset  


  1. A. M. Glass, �??Photorefractive Effect,�?? Opt. Eng. 17, 470-479 (1978).
  2. G. A. Magel, M. M. Fejer, and R. L. Byer, �??Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,�?? Appl. Phys. Lett. 56, 108-110 (1990). [CrossRef]
  3. Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, �??Reverse proton exchange for buried waveguides in LiNbO3,�?? J. Opt. Soc. Am. A 15, 1838-1842 (1998). [CrossRef]
  4. M. L. Bortz, L. A. Eyres, and M. M. Fejer, �??Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,�?? App. Phys. Lett. 62, 2012-2014 (1993). [CrossRef]
  5. M. H. Chou, I. Brener, M.M. Fejer, E. E. Chaban and S. B. Christman, �??1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,�?? IEEE Photon. Technol. Lett. 11, 653-655 (1999). [CrossRef]
  6. P. J. Chandler, L. Zhang, and P. D. Townsend, �??Double wave-guide in LiNbO3 by ion-implantation,�?? Appl. Phys. Lett. 55, 1710-1712 (1989). [CrossRef]
  7. J. Amin, V.Pruneri, J. Webjörn, P. St. J. Russell, D.C. Hanna, J. S. Wilkinson, �??Blue light generation in a periodically poled Ti: Lithium Niobate channel waveguide,�?? Opt. Commun. 135, 41-44 (1997). [CrossRef]
  8. G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, W. Sohler, �??Efficient Cascaded Difference Frequency Conversion in Periodically Poled Ti: Lithium Niobate Waveguides using Pulsed and CW Pumping,�?? Appl. Phys. B 73, 501-504 (2001). [CrossRef]
  9. W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, �??Fabrication, Characterization and Index Profile Modeling of High-Damage Resistance Zn-Diffused Waveguide in Congruent and MgO: Lithium Niobate,�?? J. Lightwave Technol. 10, 1238-1246 (1992). [CrossRef]
  10. Herreros and G. Lifante, �??LiNbO3 Optical Waveguides by Zn diffusion from Vapor Phase,�?? Appl. Phys. Lett. 66, 1449-1451 (1995). [CrossRef]
  11. R. C. Twu, C. C. Huang, and W. S. Wang, �??Zn Indiffusion Waveguide Polarizer on Y-cut LiNbO3 at 1.32-µm Wavelength,�?? IEEE Photon. Technol. Lett. 12, 161-163 (2000). [CrossRef]
  12. T. Suhara, T. Fujieda, M. Fujimura and H. Nishihara, �??Fabrication Zn: Lithium Niobate Waveguides by Diffusing ZnO in Low Pressure Atmosphere,�?? Jpn. J. Appl. Phys. 39, L864-865 (2000). [CrossRef]
  13. R. Nevado, E. Cantelar, G. Lifante and F. Cusso, �??Preservation of Periodically Poled Structures in Zn-Diffused Lithium Niobate Waveguides,�?? Jpn. J. Appl. Phys. 39, L488-L489 (2000). [CrossRef]
  14. M. Fujimura, H. Ishizuki, T. Suhara and H. Nishihara, �??Quasi-phasematched waveguide conversion in Zn-diffused LiNbO3 waveguide,�?? in Proceedings of Conference Lasers and Electro - Optics (CLEO/PR'01), ME1-5, Tech. Digest vol. I, pp. I96-97, Makuhari, July 15-19, (2001).
  15. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, M. M. Fejer, �??Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,�?? Opt. Lett. 27, 43-45 (2002). [CrossRef]
  16. M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, D. F. Welch, �??Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,�?? IEEE J. Quantum. Electron. 30, 2953-2960 (1994). [CrossRef]
  17. J. C. Campbell, �??Coupling of fibers to Ti-diffused LiNbO3 waveguides by butt-joining,�?? Appl. Opt. 12, 2037-2039 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited