OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 13 — Jun. 27, 2005
  • pp: 4931–4938

Detailed characterization of slow and dispersive propagation near a mini-stop-band of an InP photonic crystal waveguide.

Marcelo Davanço, Aimin Xing, James Raring, Evelyn L. Hu, and Daniel J. Blumenthal  »View Author Affiliations

Optics Express, Vol. 13, Issue 13, pp. 4931-4938 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1124 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An experimental study of light propagation near a small band gap for a lattice-of-holes InP photonic crystal waveguide is reported. Polarization-resolved measurements of power transmission, reflection and group delay clearly reveal the PC waveguide filtering properties. Group delay enhancement was observed close to the band-edges together with very large dispersion. The test devices were fabricated with a novel technique that allows incorporation of deeply-etched photonic crystals within an InP photonic integrated circuit.

© 2005 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Research Papers

Original Manuscript: May 2, 2005
Revised Manuscript: June 10, 2005
Published: June 27, 2005

Marcelo Davanco, Aimin Xing, James Raring, Evelyn Hu, and Daniel Blumenthal, "Detailed characterization of slow and dispersive propagation near a mini-stop-band of an InP photonic crystal waveguide," Opt. Express 13, 4931-4938 (2005)

Sort:  Journal  |  Reset  


  1. T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, �??Observation of Pulse Compression in Photonic Crystal Coupled Cavity Waveguides,�?? J. Lightwave Technol. 22 514-519 (2004). [CrossRef]
  2. A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, E. L. Hu, �?? Pulse compression in Line Defect Photonic Waveguide ,�?? in Proceedings of the Optical Fiber Communications Conference 2005, Paper OWD5.
  3. M. Notomi, K. Yamada, A. Shynia, J. Takahashi, C. Takahashi, I. Yokohama, �??Extremely Large Group- Velocity of Line-Defect Waveguides in Photonic Crystal Slabs,�?? Phys. Rev. Lett 87 253902-1-4 (2001). [CrossRef]
  4. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré , �??Coupled-mode theory and propagation losses in photonic crystal waveguides,�?? Opt. Express 11, 1490 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490</a>. [CrossRef] [PubMed]
  5. S. Olivier, H. Benisty, C. J. M. Smith, M. Rattier, C. Weisbuch, T. F. Krauss, �??Transmission properties of two-dimensional photonic crystal channel waveguides,�?? Opt. Quantum Electron. 34 171-181 (2002). [CrossRef]
  6. J. M. Bendickson, J. P. Dowling, M. Scalora, �??Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,�?? Phys. Rev. E 53, 4107 (1996). [CrossRef]
  7. H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, D. Cassagne, �??Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,�?? Opt. Quantum Elec. 34 205-215 (2002). [CrossRef]
  8. M. L. Mašanoviæ, V. Lal, J. A. Summers , J. S. Barton, E. J. Skogen, Rau, L. G., L. A. Coldren and D. J. Blumenthal, �??Widely-Tunable Monolithically-Integrated All-Optical Wavelength Converters in InP,�?? J. Lightwave Technol. 23 1350-62 (2005). [CrossRef]
  9. S. Mankopf, R März, M Kamp, D. Guang-Hua, F. Lelarge, A. Forchel, �??Tunable photonic crystal coupledcavity laser,�?? IEEE J. Quantum Electron. 40, 1306-14 (2004). [CrossRef]
  10. A. Xing, M. Davanço, D. J. Blumenthal, E. L. Hu, �??Fabrication of InP-based two-dimensional photonic crystal membrane,�?? J. Vac. Sci. Technol. B 22 70 (2004). [CrossRef]
  11. T. Jensen, E. Witzel, A. Paduch, P. Ziegler, E.U.Wagemann and O. Funke, �??A new method to determine loss, PDL, GD and DGD of passive optical components�??, 18th NFOEC, Dallas, September 2002.
  12. E. Collett, Polarized Light in Fiber Optics (The PolaWave Group, 2003), Chap. 13.
  13. K. Yamaguchi, M. Kelly, G. Stolze, D. Kobasevic, �??Polarization-Resolved Measurements using Mueller Matrix Analysis,�?? Agilent application note 5989-1261EN.
  14. The MIT Photonic-Bands package, <a href="http://ab-initio.mit.edu/mpb/">http://www.ab-inito.mit.edu/mpb/</a>
  15. M. Qiu, �??Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,�?? App. Phys. Lett. 81 1163 (2002). [CrossRef]
  16. L. J. Gamble, W. M. Diffey, S. T. Cole, R. L. Fork, D. K. Jones, T. R. Nelson, Jr., J. P. Loehr, J. E. Ehret, �??Simultaneous measurement of group delay and transmission of a one-dimensional photonic crystal,�?? Opt. Express 5 267 (1999), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-5-11-267">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-5-11-267.</a> [CrossRef] [PubMed]
  17. G. von Freymann, S. John, S. Wong, V. Kitaev, G. A. Ozin, �??Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,�?? App. Phys. Lett. 86 053108 (2005). [CrossRef]
  18. L. A Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley Intersciences), Chap. 6.
  19. P. St. Russel, �??Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,�?? J. Mod. Opt. 38, 1599-1619 (1991). [CrossRef]
  20. N. M. Litchinitser, B. J. Eggleton, D. B. Patterson, �?? Fiber Bragg Gratings for Dispersion Compensation in Transmission: Theoretical Model and Design Criteria for Nearly Ideal Pulse Recompression,�?? J. Lightwave Technol. 15 1303 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited