OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 13 — Jun. 27, 2005
  • pp: 4939–4951

Low-loss guided modes in photonic crystal waveguides

Dario Gerace and Lucio Claudio Andreani  »View Author Affiliations

Optics Express, Vol. 13, Issue 13, pp. 4939-4951 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (561 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study disorder-induced propagation losses of guided modes in photonic crystal slabs with line-defects. These losses are treated within a theoretical model of size disorder for the etched holes in the otherwise periodic photonic lattice. Comparisons are provided with state-of-the-art experimental data, both in membrane and Silicon-on-Insulator (SOI) structures, in which propagation losses are mainly attributed to fabrication imperfections. The dependence of the losses on the photon group velocity and the useful bandwidth for low-loss propagation are analyzed and discussed for membrane and asymmetric as well as symmetric SOI systems. New designs for further improving device performances are proposed, which employ waveguides with varying channel widths. It is shown that losses in photonic crystal waveguides could be reduced by almost an order of magnitude with respect to latest experimental results. Propagation losses lower than 0.1 dB/mm are predicted for suitably designed structures, by assuming state-of-the-art fabrication accuracy.

© 2005 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

Original Manuscript: May 10, 2005
Revised Manuscript: June 10, 2005
Published: June 27, 2005

Dario Gerace and Lucio Andreani, "Low-loss guided modes in photonic crystal waveguides," Opt. Express 13, 4939-4951 (2005)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059�??2062 (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486�??2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  4. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).
  5. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: the Road from Theory to Practice (Kluwer, Dordrecht, 2002).
  6. See papers in IEEE J. Quantum Electron. 38, Feature section on Photonic Crystal Structures and Applications, edited by T. F. Krauss and T. Baba, pp.724�??963 (2002). [CrossRef]
  7. A. Chutinan and S. Noda, �??Waveguides and waveguide bends in two-dimensional photonic crystal slabs,�?? Phys. Rev. B 62, 4488�??4492 (2000). [CrossRef]
  8. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, �??Linear waveguides in photonic crystal slabs,�?? Phys. Rev. B 62, 8212�??8222 (2000). [CrossRef]
  9. M. Qiu, �??Band gap effects in asymmetric photonic crystal slabs,�?? Phys. Rev. B 66, 033103 (2002). [CrossRef]
  10. H. Benisty, D. Labilloy, C. Weisbuch, C. J. .M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, �??Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,�?? Appl. Phys. Lett. 76, 532 (2000). [CrossRef]
  11. W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, �??Out-of-plane scattering in photonic crystal slabs,�?? IEEE Photon. Techn. Lett. 13, 565�??567 (2001). [CrossRef]
  12. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, �??Structural tuning of guiding modes of line-defect waveguides of Silicon-on-Insulator photonic crystal slabs,�?? IEEE J. Quantum Electron. 38, 736�??742 (2002). [CrossRef]
  13. S. J. McNab, N. Moll, and Yu. A. Vlasov, �??Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,�?? Opt. Express 11, 2927�??2939 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927</a>. [CrossRef] [PubMed]
  14. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, �??Waveguides, resonators and their coupled elements in photonic crystal slabs,�?? Opt. Express 12, 1551�??1561 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551</a>. [CrossRef] [PubMed]
  15. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, and R. Baets, �??Basic structures for photonic integrated circuits in Silicon-on-insulator,�?? Opt. Express 12, 1583�??1591 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1583">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1583</a>. [CrossRef] [PubMed]
  16. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, �??Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,�?? Opt. Express 12, 1090�??1096 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1090">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1090</a>. [CrossRef] [PubMed]
  17. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, �??Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,�?? Appl. Phys. Lett. 77, 1617�??1619 (2000). [CrossRef]
  18. Yu. A. Vlasov and S. J. McNab, �??Losses in single-mode silicon-on-insulator strip waveguides and bends,�?? Opt. Express 12, 1622�??1631 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1622">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1622</a>. [CrossRef] [PubMed]
  19. W. Bogaerts, P. Bienstman, and R. Baets, �??Scattering at sidewall roughness in photonic crystal slabs,�?? Opt. Lett. 28, 689�??691 (2003). [CrossRef] [PubMed]
  20. M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Solja�?i�?, �??Effect of a photonic band gap on scattering from waveguide disorder,�?? Appl. Phys. Lett. 84, 3639�??3641 (2004). [CrossRef]
  21. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, �??Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,�?? Appl. Phys. Lett. 82, 1661�??1663 (2003). [CrossRef]
  22. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, �??Analysis of a line-defect waveguide on a Silicon-on-Insulator two-dimensional photonic-crystal slab,�?? J. Lightwave Technol. 22, 2787�??2792 (2004). [CrossRef]
  23. B. Cluzel, D. G´erard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, �??Experimental demonstration of Bloch mode parity change in photonic crystal waveguide,�?? Appl. Phys. Lett. 85, 2682�??2684 (2004). [CrossRef]
  24. D. Gerace and L. C. Andreani, �??Disorder-induced losses in photonic crystal waveguides with line defects,�?? Opt. Lett. 29, 1897�??1899 (2004). [CrossRef] [PubMed]
  25. L. C. Andreani, D. Gerace, and M. Agio, �??Gap maps, diffraction losses and exciton-polaritons in photonic crystal slabs,�?? Phot. Nanostruct. 2, 103�??110 (2004). [CrossRef]
  26. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, �??Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,�?? Phys. Rev. Lett. 94, 033903 (2005). [CrossRef] [PubMed]
  27. K. Yamada, H. Morita, A. Shinya, and M. Notomi, �??Improved line-defect structures for photonic-crystal waveguides with high group velocity,�?? Opt. Commun. 198, 395�??402 (2001). [CrossRef]
  28. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, and I. Yokohama, �??Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,�?? Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  29. L. C. Andreani and M. Agio, �??Photonic bands and gap maps in a photonic crystal slab,�?? IEEE J. Quantum Electron. 38, 891�??898 (2002). [CrossRef]
  30. T. Ochiai and K. Sakoda, �??Nearly free-photon approximation for two-dimensional photonic crystal slabs�?? Phys. Rev. B 64, 045108 (2001). [CrossRef]
  31. L. C. Andreani, �??Photonic bands and radiation losses in photonic crystal waveguides,�?? Physica Status Solidi B 234, 139 (2002). [CrossRef]
  32. L. C. Andreani and M. Agio, �??Intrinsic diffraction losses in photonic crystal waveguides with line defects,�?? Appl. Phys. Lett. 82, 2011�??2013 (2003). [CrossRef]
  33. M. Skorobogatiy, G. Bégin, and A. Talneau, �??Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,�?? Opt. Express 13, 2487�??2502 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2487">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2487</a>. [CrossRef] [PubMed]
  34. M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C. Andreani, M. Belotti, and Y. Chen, �??Single-mode versus multi-mode behavior in Silicon photonic crystal waveguides measured by attenuated total reflectance,�?? submitted to Phys. Rev. B.
  35. D. Marcuse, �??Mode conversion caused by surface imperfections of a dielectric slab waveguide,�?? Bell. Syst. Tech. J. 48, 3187 (1969).
  36. F. P. Payne and J. P. R. Lacey, �??A theoretical analysis of scattering loss from planar optical waveguides,�?? Opt. Quant. Electron. 26, 977�??986 (1994). [CrossRef]
  37. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, �??Size influence on the propagation loss induced by side-wall roughness in ultra-small SOI waveguides,�?? IEEE Photon. Techn. Lett. 16, 1661�??1663 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited