OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 13 — Jun. 27, 2005
  • pp: 5106–5115

Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering

L.-S. Yan, Y. Wang, B. Zhang, C. Yu, J. McGeehan, L. Paraschis, and A. E. Willner  »View Author Affiliations

Optics Express, Vol. 13, Issue 13, pp. 5106-5115 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (832 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical filtering has been used to extend the reach of directly modulated laser in 10Gb/s WDM systems via two separate mechanisms: narrowing the broadened spectrum, and converting frequency modulation into useful amplitude modulation. We investigate in detail, the impact of asymmetric and narrowband optical filtering at the transmitter or receiver. Experimental demonstrations for both shorter distance and long-haul like transmission using optical filtering are performed. The transmission reach is nearly doubled from <25-km to >45-km without dispersion compensation. 1400-km error-free transmission (Q>15.6-dB) is further achieved over dispersion-managed link for a directly modulated DFB laser within an 8×10-Gb/s WDM system

© 2005 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Research Papers

Original Manuscript: April 12, 2005
Revised Manuscript: June 3, 2005
Published: June 27, 2005

L.-S. Yan, Y. Wang, B. Zhang, C. Yu, J. McGeehan, L. Paraschis, and A. E. Willner, "Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering," Opt. Express 13, 5106-5115 (2005)

Sort:  Journal  |  Reset  


  1. H. J. Thiele, L. E. Nelson, and S. K. Das, �??Capacity-enhanced coarse WDM transmission using 10 Gbit/s sources and DWDM overlay,�?? Electron. Lett. 39, 1264-1266 (2003). [CrossRef]
  2. A. Zadok, H. Shalom, M. Tur, W. D. Cornwell, and I. Andonovic, �??Spectral shift and broadening of DFB lasers under direct modulation,�?? IEEE Photon. Technol. Lett. 10, 1709-1711 (1998). [CrossRef]
  3. K. Sato, �??Semiconductor light sources for 40-Gb/s transmission systems,�?? J. Lightwave Technol. 20, 2035-2043 (2002). [CrossRef]
  4. A. Wonfor, R. V. Renty, I. H. White, J. K. White, A. E. Kelly and C. Tombling, �??Uncooled 40 Gb/s transmission over 40 km single mode fiber using multi-level modulation of a highly linear laser,�?? in Proc. OFC, MF60, Atlanta, GA, 2003.
  5. K. Soto, S. Kuwahara, A. Hirano, M. Yoneyama, and Y. Miyamoto, �??4x40 Gbit/s dense WDM transmission over 40-km SMF using directly modulated DFB lasers,�?? in Proc. ECOC, We1.5.7, Stockholm, Sweden, 2004.
  6. B. Wedding, and W. Poehlmann, �??43 Gbit/s transmission over 40.5 km SMF without optical amplifier using a directly modulated laser diode,�?? in Proc. ECOC, We2.6.6, Stockholm, Sweden, 2004.
  7. L. Illing, and M. B. Kennel, �??Shaping current waveforms for direct modulation of semiconductor lasers,�?? IEEE J. Quantum Electron. 40, 445-452 (2004). [CrossRef]
  8. K. Nakahara, T. Tsuchiya, T. Kitatani,K. Shinoda, T. Kikawa, F. Hamano, S. Fujisaki, T, Taniguchi, E. Nomoto, M. Sawada, and T. Yuasa, �??12.5-Gb/s Direct modulation up to 115°C in 1.3-µm InGaAlAs-MQW RWG DFB lasers with notch-free grating structure,�?? J. Lightwave Technol. 22, 159-165 (2004). [CrossRef]
  9. D. Mahgerefteh, A. M. Benzoni, P. S. Westbrook, K. S. Feder, P. I. Reyes, P. Steinvurzel, B. J. Eggleton, R. G. Ernst, L. A. Reith, and D. M. Gill, �??DMRZ: a directly modulated 10-Gb/s RZ source for ultralong-haul WDM systems,�?? IEEE Photon. Technol. Lett. 14, 546-548 (2002). [CrossRef]
  10. M. C. Tatham, X. Cu, L. D. Westbrook, G. Sherlock, and D. M. Spirit, �??Transmission of 10 Gbit/s directly modulated DFB signals over 200-km standard fiber using mid-span spectral inversion,�?? Electron. Lett. 30, 1335�??1336 (1994). [CrossRef]
  11. M. D. Feuer, S. Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, �??Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,�?? IEEE Photon. Technol. Lett. 15, 1788-1790 (2003). [CrossRef]
  12. P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Morgan, �??38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 µm DFB laser,�?? Electron Lett. 33, 310�??311 (1997). [CrossRef]
  13. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, �??10-Gb/s transmission of 1.55-µm directly modulated signal over 100 km of negative dispersion fiber,�?? IEEE Photon. Technol. Lett. 13, 735�??737 (2001). [CrossRef]
  14. H. S. Chung, Y. G. Jang, and Y. C. Chung, �??Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,�?? IEEE Photon. Technol. Lett. 15, 1306-1308 (2003). [CrossRef]
  15. B. Wedding, B. Franz, and B. Junginger, �??10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,�?? J. Lightwave Technol. 12, 1720-1727 (1994). [CrossRef]
  16. C. S. Wong, and H. K. Tsang, �??Improvement of directly modulated diode-laser pulse using an optical delay interferometer,�?? IEEE Photon. Technol. Lett. 16, 632-634 (2004). [CrossRef]
  17. G. Yabre, �??Improved direct-modulation characteristics of a semiconductor laser by FM/IM conversion through an interferometer,�?? J. Lightwave Technol. 14, 2135-2140 (1996). [CrossRef]
  18. T. Nielsen and S. Chandresekhar, �??OFC 2004 Workshop on Optical and Electronic Mitigation of Impairments�??, J. Lightwave Technol. 23, 131-142 (2005). [CrossRef]
  19. A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Kung, D. N. Maywar, A. Gurevich, and T. H. Wood, �??Ultrahigh-capacity long-haul 40-Gb/s WDM transmission with 0.8-b/s/Hz spectral efficiency by means of strong optical filtering,�?? IEEE Photon. Technol. Lett. 15, 470-472 (2003). [CrossRef]
  20. N. Yoshikane and I. Morita, �??160% spectrally-efficient 5.12-Tb/s (64x85.4 Gb/s RZ DQPSK) transmission without polarization demultiplexing,�?? in Proc. ECOC, Postdeadline Th4.4.3, Stockholm, Sweden, 2004.
  21. M. McAdama, E. Peral, D. Proenzano, W. K. Marshall, and A. Yariv, �??Improved laser modulation response by frequency modulation to amplitude modulation conversion in transmission through a fiber grating,�?? Appl. Phys. Lett., 71, 879-881 (1997). [CrossRef]
  22. H.-Y. Yu, D. Mahgerefteh, P. S. Cho, and J. Goldhar, �??Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter,�?? J. Lightwave Technol. 17, 898-903 (1999). [CrossRef]
  23. M. McAdama, D. Proenzano, E. Peral, W. K. Marshall, and A. Yariv, �??Effect of transmission through fiber gratings on semiconductor laser intensity noise,�?? Appl. Phys. Lett. 71, 3341-3343 (1997). [CrossRef]
  24. T. L. Koch and R. A. Linke, �??Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,�?? Appl. Phys. Lett. 48, 613�??615 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited