OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 14 — Jul. 11, 2005
  • pp: 5234–5239

Flow measurement without phase information in optical coherence tomography images

Jennifer K. Barton and Steven Stromski  »View Author Affiliations


Optics Express, Vol. 13, Issue 14, pp. 5234-5239 (2005)
http://dx.doi.org/10.1364/OPEX.13.005234


View Full Text Article

Enhanced HTML    Acrobat PDF (536 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Doppler optical coherence tomography (DOCT) is a valuable tool for depth-resolved flow measurements in tissue. However, DOCT is insensitive to flow in the direction normal to the imaging beam and requires knowledge of the phase of the demodulated signal. We present an alternative method of extracting flow information, using speckle of conventional amplitude optical coherence tomography images. Due to the pixel-by-pixel acquisition scheme of conventional OCT, time-varying speckle is manifested as a change in OCT image spatial speckle frequencies. We tested the ability of speckle to provide quantitative flow information using an Intralipid flow phantom. Over a range of velocities, the ratio of high to low OCT image spatial frequencies was shown to bear a linear relation to flow velocity. With two dimensional imaging, flow in a tube and in vivo hamster skin was visualized. This study shows the feasibility of extracting flow from OCT images in all directions without phase information.

© 2005 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Research Papers

History
Original Manuscript: May 9, 2005
Revised Manuscript: June 23, 2005
Published: July 11, 2005

Citation
Jennifer Barton and Steven Stromski, "Flow measurement without phase information in optical coherence tomography images," Opt. Express 13, 5234-5239 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5234


Sort:  Journal  |  Reset  

References

  1. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, �??Optical Doppler Tomographic Imaging of Fluid Flow Velocity in Scattering Media,�?? Opt. Lett. 22, 64-66 (1997). [CrossRef] [PubMed]
  2. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, �??In Vivo Bidirectional Color Doppler Flow Imaging of Picoliter Blood Volumes Using Optical Coherence Tomography,�?? Opt. Lett. 22, 1439-1441 (1997). [CrossRef]
  3. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, �??Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity.�?? Opt. Lett. 25, 114-116 (2000). [CrossRef]
  4. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, �??In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,�?? Arch. Ophthalmol., 121, 235-239 (2003). [PubMed]
  5. J. D. Briers, �??Laser Doppler and Time-Varying Speckle: A Reconciliation,�?? J. Opt. Soc. Am. A, 13, 345-350 (1996). [CrossRef]
  6. J.W. Goodman, �??Statistical Properties of Laser Speckle Patterns,�?? in Laser speckle and related phenomena, Vol.9 in series Topics in Applied Physics, J.C. Dainty, Ed., (Springer-Verlag, New York, 1984).
  7. J. M. Schmitt, S. H. Xiang, K. M. Yung, �??Speckle in Optical Coherence Tomography,�?? J. Biomed. Opt. 4, 95-105 (1999). [CrossRef]
  8. A. F. Fercher and J. D. Briers, �??Flow Visualization by Means of Single-Exposure Speckle Photography,�?? Opt. Commun. 37, 326-330 (1981). [CrossRef]
  9. J. D. Briers, �??Speckle Fluctuations and Biomedical Optics: Implications and Applications,�?? Opt. Eng. 32 277-283 (1993). [CrossRef]
  10. Y. Aizu and T. Asakura, �??Bio-Speckle Phonomena and Their Application to the Evaluation of Blood Flow,�?? Opt. Laser Tech. 23, 205-219 (1991). [CrossRef]
  11. H. Fujii, T. Asakura, �??Blood Flow Observed by Time-Varying Laser Speckle,�?? Opt. Lett. 10, 104-106 (1985). [CrossRef] [PubMed]
  12. K. Gossage, T. Tkaczyk, J. Rodriguez and J. Barton, �??Texture Analysis of Optical Coherence Tomography Images: Feasibility for Tissue Classification,�?? J. Biomed. Opt. 8, 570-575 (2003). [CrossRef] [PubMed]
  13. P. Yu, L. Peng, M. Mustata, �??Time-dependent speckle in holographic optical coherence imaging and the health of tumor tissue,�?? Opt. Lett. 29, 68-70 (2004). [CrossRef] [PubMed]
  14. J. K. Barton, A. S. Yazdanfar, T. J. Pfefer, V. Westphal and J. A. Izatt, �??Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modeling,�?? Phys. Med. Biol. 46, 1665-1678 (2001). [CrossRef] [PubMed]
  15. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar and J. A. Izatt, �??Velocity-Estimation Accuracy and Frame-Rate limitations in Color Doppler Optical Coherence Tomography,�?? Opt. Lett. 23, 1057-1059 (1998). [CrossRef]
  16. S. Yazdanfar and J. A. Izatt, �??Self-referenced Doppler optical coherence tomography,�?? Opt. Lett. 27, 2085- 2087 (2002). [CrossRef]
  17. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach and H. J. Schwarzmaier, �??Optical properties of blood in the near-infrared spectral range,�?? Proc. SPIE 2678, 314�??24 (1996). [CrossRef]
  18. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, �??Light scattering in intralipid-10% in the wavelength range of 400-1100 nm,�?? Appl. Opt. 30, 4507�??4514 (1991). [CrossRef] [PubMed]
  19. T. S. Tkaczyk, K. W. Gossage and J. K. Barton, �??Speckle Image Properties in Optical Coherence Tomography,�?? Proc. SPIE 4619, 59-77 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited