OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 14 — Jul. 11, 2005
  • pp: 5347–5352

Compact and integrated TM-pass waveguide polarizer

Chyong-Hua Chen, Lin Pang, Chia-Ho Tsai, Uriel Levy, and Yeshaiahu Fainman  »View Author Affiliations

Optics Express, Vol. 13, Issue 14, pp. 5347-5352 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (279 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel integrated TM-pass waveguide polarizer with a subwavelength-wide slot is introduced and theoretically analyzed. With a proper design of the slot, the waveguide can be used as a single polarization waveguide to guide only TM polarization modes of the light signal. With 26 µm length of this TM-pass polarizer, our computer simulations predict the insertion loss of 0.54 dB for the TM polarization mode with the extinction ratio of 20.3 dB at the wavelength of 1.55 µm.

© 2005 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5440) Optical devices : Polarization-selective devices
(230.7370) Optical devices : Waveguides

ToC Category:
Research Papers

Original Manuscript: May 3, 2005
Revised Manuscript: June 23, 2005
Published: July 11, 2005

Chyong-Hua Chen, Lin Pang, Chia-Ho Tsai, Uriel Levy, and Yashaiahu Fainman, "Compact and integrated TM-pass waveguide polarizer," Opt. Express 13, 5347-5352 (2005)

Sort:  Journal  |  Reset  


  1. E. M. Garmire and H. Stoll, �??Propagation losses in metal-film-substrate optical waveguide,�?? IEEE J. Quantum Electron. 8, 763-6 (1972). [CrossRef]
  2. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, �??Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,�?? J. Lightwave Technol. 8, 538-44 (1990). [CrossRef]
  3. T. Nakano, K. Baba, and M. Miyagi, �??Insertion loss and extinction ratio of a surface plasmon-polariton polarizer: theoretical analysis,�?? J. Opt. Soc. Ame. B 11, 2030-5 (1994). [CrossRef]
  4. C-H Chen, L. Wang, �??Design of Finite-length metal-clad optical waveguide polarizer,�?? IEEE J. Quantum Electron. 34, 1089-97 (1998). [CrossRef]
  5. O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, �??Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,�?? Appl. Phys. Lett. 71, 750-2 (1997). [CrossRef]
  6. A. Morand, C. Shanchez-Perez. P. Benech, S. Tedjini, and D. Bosc, �??Integrated optical waveguide polarizer on glass with a birefringent polymer overlay,�?? IEEE Photonics Technol. Lett. 10, 1599-601 (1998). [CrossRef]
  7. M. J. BJ. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, �??Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography,�?? J. Bac. Sci. Technol. B. 17, 2957-60 (1999). [CrossRef]
  8. M.A. Khan and H.A. Jamid, �??Analysis of TM-pass reflection mode optical polarizer using method of lines,�?? in Proceedings of the 2003 10th IEEE International Conference on Electronics, Circuits, and Systems (Institute of Electrical and Electronics Engineers, New York, 2003). IEEE. Part Vol.2, pp. 555-8. [CrossRef]
  9. M. J. Bloemer, and J. W. Haus, �??Broadband waveguide polarizers based on the anisotropic optical constants of nanocomposite films,�?? J. Lightwave Technol. 14, 1534-1540 (1996). [CrossRef]
  10. S.K. Kim, K. Geary, D. H. Chang, H.R. Fetterman, H. Zhang, C. Zhang, C. Wang, and W.H. Steier, �??TMpass polymer modulators with poling-induced waveguides and self-aligned electrodes,�?? Electron. Lett. 39, 721-2 (2003). [CrossRef]
  11. K. Baka, T. Iden, and M. Miyagi, �??TM-pass glass waveguide polarizer with periodic multilayer cladding overlaid with isotropic dielectric media,�?? Electron. Lett. 36, 1461-2 (2000). [CrossRef]
  12. S.S. Lee, S. Garner, A. Chen, V. Chuyanov, W. H. Steier, S. W. Ahn, and S-Y Shin, �??TM-pass polarizer based on a photobleaching-induced waveguide in polymers,�?? IEEE Photonics Technol Lett. 10, 836-8 (1998). [CrossRef]
  13. H.A. Haus, W.P. Huang, and A.W. Snyder, �??Coupled-mode formulations,�?? Opt. Lett. 14, 1222-4 (1989). [CrossRef] [PubMed]
  14. P. L. Liu, and B. J. Lin, �??Study of form birefringence in waveguide devices using the semivectorial beam propagation method,�?? IEEE Photonics Technol. Lett. 3, 913-15 (1991). [CrossRef]
  15. V. R. Almeida, Qianfan Xu, C. A. Barrios and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-11 (2004). [CrossRef] [PubMed]
  16. A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  17. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (J. Wiley, New York, 2001).
  18. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited