OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 14 — Jul. 11, 2005
  • pp: 5416–5423

On the origin of internal field in Lithium Niobate crystals directly observed by digital holography

Melania Paturzo, Pietro Ferraro, Simonetta Grilli, Domenico Alfieri, Paolo De Natale, Marella de Angelis, Andrea Finizio, Sergio De Nicola, Giovanni Pierattini, Federico Caccavale, David Callejo, and Alessandro Morbiato  »View Author Affiliations


Optics Express, Vol. 13, Issue 14, pp. 5416-5423 (2005)
http://dx.doi.org/10.1364/OPEX.13.005416


View Full Text Article

Enhanced HTML    Acrobat PDF (1776 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show the defect dependence of the internal field in Lithium Niobate using a full-field interferometric method and demonstrate that it can be directly measured on some clusters of defects embedded in a stoichiometric matrix. Results show that the value of the internal field grows in proximity of defects and vanishes far from them, which addresses the long-standing issue about its origin in Lithium Niobate crystal.

© 2005 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(100.3010) Image processing : Image reconstruction techniques
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(160.2100) Materials : Electro-optical materials
(160.3730) Materials : Lithium niobate

ToC Category:
Research Papers

History
Original Manuscript: May 16, 2005
Revised Manuscript: June 27, 2005
Published: July 11, 2005

Citation
Melania Paturzo, Pietro Ferraro, Simonetta Grilli, Domenico Alfieri, Paolo De Natale, Marcella de Angelis, Andrea Finizio, Sergio De Nicola, Giovanni Pierattini, Federico Caccavale, David Callejo, and Alessandro Morbiato, "On the origin of internal field in Lithium Niobate crystals directly observed by digital holography," Opt. Express 13, 5416-5423 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5416


Sort:  Journal  |  Reset  

References

  1. 1. M. Soljacic and J. D. Joannopoulos, �??Enhancement of nonlinear effects using photonic crystals,�?? Nature Material 3, 211-219 (2004). [CrossRef]
  2. Berger, V., �??Non linear photonic crystals,�?? Phys. Rev. Lett. 81, 4136�??4139 (1998). [CrossRef]
  3. Broderick, N. G. R.,Ross, G. W., Offerhaus, H. L., Richardson, D. J. & Hanna, D. C., �??Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,�?? Phys. Rev. Lett. 84, 4345�??4348 (2000). [CrossRef] [PubMed]
  4. M. M. Fejer, G. A. Magel, D.H. Junt, and R.L. Byer, �??Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,�?? IEEE J. of Quantum Electronics, 28 No. 11, 2631-2654 (1992). [CrossRef]
  5. D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitcheli, and L. W. Hollberg, �??Difference-frequency generation in PPLN at 4.25 µm: an anlysis of sensitivity limits for DFG spectrometers,�?? Appl. Phys. B 70, 747�??50 (2000). [CrossRef]
  6. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, �??PPLN waveguide for quantum communication,�?? Eur. Phys. J. D 18, 155-160 (2002). [CrossRef]
  7. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, �??Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities,�?? Phys. Rev. Lett. 92, 043903 (2004). [CrossRef] [PubMed]
  8. V. Gopalan and M.C. Gupta, �??Observation of internal field in LiTaO3 single crystals: Its origin and time-temperature dependence,�?? Appl. Phys. Lett. 68, 888 (1996). [CrossRef]
  9. M. Muller, E. Soergel, M.C. Wengler, K. Buse, �??Light deflection from ferroelectric domain boundaries,�?? Appl. Phys. B 78, 367�??370 (2004). [CrossRef]
  10. V. Gopalan and M.C. Gupta, �??Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,�?? J. Appl. Phys. 80, 6099 (1996). [CrossRef]
  11. V. Gopalan, T. Mitchell, Y. Furukawa, and K. Kitamura, �??The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,�?? Appl. Phys. Lett. 72, 1981 (1998). [CrossRef]
  12. S. Kim and V. Gopalan, K. Kitamura, and Y. Furukawa, �??Domain reversal and nonstoichiometry in lithium tantalite,�?? J. Appl. Phys. 90, 2949 (2001). [CrossRef]
  13. J.H.Ro et al., �??Non stoichiometric defect effect on coercive field in lithium niobate crystals,�?? Ferroelectrics 269, 231-236 (2002).
  14. A. V. Yatsenko, E. N. Ivanova, and N. A. Sergeev, �??NMR study of intrinsic defect in congruent LiNbO3. 1. �??Unoverlapping�?? defects,�?? Physica B 240, 254 (1997). [CrossRef]
  15. V. Grachev and G. Malovichko, �??EPR, ENDOR, and optical-absorption study of Cr3+ centers substituting for Niobium in Li-rich lithium niobate crystals,�?? Phys. Rev. B, 62, 7779-7790 (2000). [CrossRef]
  16. Kim S., Gopalan V., and Steiner B., �??Direct x-ray synchrotron imaging of strains at 180 degree domain walls in congruent LiNbO3 and LiTaO3 crystals,�?? Appl. Phys. Lett. 77, 2051-2053 (2000). [CrossRef]
  17. Hu, Z. W. et al. �??Phase mapping of periodically domain-inverted LiNbO3 with coherent X-rays,�?? Nature 392, 690-693 (1998). [CrossRef]
  18. P.Rejmankova-Pernot et al. �??Phase Retrieval by Combined Bragg and Fresnel X-ray Diffraction Imaging,�?? Phys. Rev. Lett. 81, 3435-3438 (1998). [CrossRef]
  19. R.C. Rogan, N. Tamura, G.A. Swift and E.Ustundag, �??Direct measurement of triaxial strain field around ferroelectric domains using x-ray microdiffraction,�?? Nature Material 2, 379-381 (2003). [CrossRef]
  20. H. Donneberg, S.M. Tomlinson, C.R.A. Catlow, and O.F. Schirmer, �??Computer-simulation studies of intrinsic defects in LiNbO3 crystals,�?? Phys. Rev. B 40, 11909 (1989). [CrossRef]
  21. N. Iyi, K. Kitamura, Y. Yajima, Y. Furukawa and M.Sato, �??Defect Structure Model of MgO-Doped LiNbO3,�?? Journal of Solid State Chemistry, 118, 148-152, (1995). [CrossRef]
  22. G. Malovichko, V. Grachev, O.Schirmer, �??Interrelation of intrinsic and extrinsic defect-congruent, stoichiometric, and regularly ordered lithium niobate,�?? Appl. Phys. B 68 785-793, (1999). [CrossRef]
  23. S.Kan, M. Sakamoto, Y. Okano, K. Hoshikawa, T. Fukuda, �??LN single crystal growth from Li-rich melts by the continuous charging and double crucible Cz methods,�?? J. Crystal Growth 128, 915-919, (1993). [CrossRef]
  24. K. Polgar, A. Peter, I. Foldvari, Z. Szaller, �??Structural defects in flux-grown stoichiometric LN single crystals,�?? J. Crystal Growth 218, 327-333,(2000). [CrossRef]
  25. M. de Angelis, P. Ferraro, S. Grilli, S. De Nicola, A. Finizio, M. Paturzo, and G. Pierattini, �??Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,�?? Appl. Phys. Lett. 85, 2785 (2004). [CrossRef]
  26. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini and R. Meucci, �??Whole optical wavefields reconstruction by digital holography,�?? Opt. Express 9, 294 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-294">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-294</a> [CrossRef] [PubMed]
  27. M. Park, K. Kitamura, K. Terabe, Y. Furukawa, Y. Ji, E. Suzuki �??Mechanical twinning in stoichiometric lithium niobate single crystal,�?? J. Crystal Growth 180 101-104, (1997). [CrossRef]
  28. S. Grilli et al. �??In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography,�?? Opt. Express 12, 1832-1842 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1832">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1832</a> [CrossRef] [PubMed]
  29. M. Paturzo et al., �??Investigation of electric internal field in congruent LiNbO3 by electro-optic effect,�?? Appl. Phys. Lett. 85, 5652 (2004). [CrossRef]
  30. U. Hartwig, K. Peithmann, B. Sturman and K. Buse, �??Strong permanent reversible diffraction gratings in copper-doped lithium niobate crystals caused by a zero-electric-field photorefractive effect,�?? Appl. Phys. B 80, 227�??230 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (560 KB)     
» Media 2: MOV (515 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited