OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 14 — Jul. 11, 2005
  • pp: 5440–5449

Inverse designed photonic crystal de-multiplex waveguide coupler

Andreas Håkansson and José Sánchez-Dehesa  »View Author Affiliations


Optics Express, Vol. 13, Issue 14, pp. 5440-5449 (2005)
http://dx.doi.org/10.1364/OPEX.13.005440


View Full Text Article

Enhanced HTML    Acrobat PDF (531 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-dimensional photonic crystal diplexer integrated with a waveguide coupler is proposed. The design is computer generated through an inverse design process, limited within an area measuring 5µm×5µm. The best working device was designed for the optical communication wavelengths, 1.50µm and 1.55µm, i.e. a channel spacing of 50 nm. The device exhibits crosstalks suppressed below 40dB and coupling efficiencies close to 80%, for both channels.

© 2005 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(220.4830) Optical design and fabrication : Systems design

ToC Category:
Research Papers

History
Original Manuscript: May 20, 2005
Revised Manuscript: June 28, 2005
Published: July 11, 2005

Citation
Andreas Håkansson and José Sánchez-Dehesa, "Inverse designed photonic crystal de-multiplex waveguide coupler," Opt. Express 13, 5440-5449 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5440


Sort:  Journal  |  Reset  

References

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals, (Princeton Press, Princeton, New Jersey, 1995).
  4. L. Sanchis, A. Håkansson, D. Lopez-Zanón, J. Bravo-Abad and J. Sánchez-Dehesa, �??Integrated optical devices design by genetic algorithm,�?? Appl. Phys. Lett. 84, 4460�??4462 (2004). [CrossRef]
  5. L. Shen, Z. Ye, and S. He, �??Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,�?? Phys. Rev. B 68, no. 035109 (2003). [CrossRef]
  6. Stefan Preble, Michal Lipson and Hod Lipson, �??Two-dimensional photonic crystals designed by evolutionary algorithms,�?? Appl. Phys. Lett. 86, 061111-061113 (2005). [CrossRef]
  7. Burger M., S. J. Osher, and E. Yablonovitch, �??Inverse problem techniques for the design of photonic crystals,�?? IEICE Trans. Electron. E87C, 258�??265 (2004).
  8. J. Geremia, J. Williams, and H. Mabuchi, �??Inverse-problem approach to designing photonic crystals for cavity QED experiments,�?? Phys. Rev. E 66, no. 066606 (2002). [CrossRef]
  9. I. Gheorma, S. Haas, and A. Levi, �??Aperiodic nano-photonic design,�?? J. of Appl. Phys. 95, 1420-1426 (2004). [CrossRef]
  10. P. Borel, A. Harpoth, L. Frandsen, M. Kristensen, P. Shi, J. S. Jensen and O. Sigmund, �??Topology optimization and fabrication of photonic crystal structures,�?? Opt. Express 12, 1996-2001 (2004) [CrossRef] [PubMed]
  11. Jasmin Smajic, Christian Hafner and Daniel Erni, �??Optimization of photonic crystal structures,�?? J. Opt. Soc. Am. A 21, 2223�??2232 (2004). [CrossRef]
  12. T.D. Happ, M. Kamp and A. Forchel, �??PhC tapers for ultracompact mode conversion,�?? Opt. Lett. 26, 1102�??1104 (2001). [CrossRef]
  13. P. Bienstman , S. Assefa, S.G. Johnson, J. D. Joannopoulos, G. S. Petrich and L. A. Kolodziejski , �??Taper structures for coupling into PhC slab waveguides,�?? J. Opt. Soc. Am. B 20, 1817�??1821 (2003). [CrossRef]
  14. P. Sanchis, J. Mart, A. Garca, A. Martnez and J. Blasco, �??High efficiency coupling technique for planar photonic crystal waveguides,�?? Electron. Lett. 38, 961�??962 (2002). [CrossRef]
  15. S. Noda, A. Chutinan and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature (London) 407, 608�??610 (2000). [CrossRef]
  16. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and Kawakami S, �??Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,�?? Appl. Phys. Lett. 74, 1370�??1372 (1999). [CrossRef]
  17. A. Håkansson and José Sánchez-Dehesa, �??Inverse design of photonic crystal devices,�?? IEEE J. Sel. Area Comm. (2005) (to be published). [CrossRef]
  18. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering, (Prentice Hall, New Jersey, 1991).
  19. Davy Pissoort, Bart Denecher, Peter Bienstman, Frank Olyslager and Danil De Zutter, �??Comparative study of three methods for the simulation of two-dimensional photonic crystals,�?? J. Opt. Soc. Am. A 21, 2186�??2195 (2004). [CrossRef]
  20. Davy Pissoort and Frank Olyslager, �??Termination of periodic waveguides by PMLs in time-harmonic integral equation-like techniques,�?? IEEE Antennas and Wireless Propagation Letters 2, 281�??284 (2003). [CrossRef]
  21. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Learning, (Addison Wesley, Reading , MA, 1989).
  22. J.H. Holland, Adaptation in natural and Artificial Systems, (The University of Michigan Press, Ann Arbor, 1975).
  23. B.R. Moon, Y.S. Lee and C.K. Kim, �??GEORG: VLSI circuit partitioner with a new genetic algorithm framework,�?? Journal of Intelligent Manufacturing 9, 401-412 (1998). [CrossRef]
  24. Andreas Håkansson, José Sánchez-Dehesa, �??Comment on �??Optimization of photonic crystal structures�??, J. Opt. Soc. Am. A 21, 2223-2232 (2004),�?? arXiv.org, cond-mat/0504581 (2005) [CrossRef]
  25. E. Cantú-Paz, D. E. Goldberg, �??Are multiple runs of genetic algorithms better than one?,�?? Genetic and Evolutionary Computation - GECCO 2003, PT I, Proceedings lecture notes in Computer Science 2723, 801�??812 (2003).
  26. S. Boscolo and M. Midrio, �??Three-dimensional multiple-scattering technique for the analysis of photonic-crystal slabs,�?? J. Lightwave Tech. 22, 2778�??2786 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1401 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited