OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 14 — Jul. 11, 2005
  • pp: 5472–5482

1-D slab photonic crystal k-vector superprism demultiplexer: analysis, and design

Aref Bakhtazad and Andrew G. Kirk  »View Author Affiliations

Optics Express, Vol. 13, Issue 14, pp. 5472-5482 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (330 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The design of a complete demultiplexer based on the k-vector superprism in a 1-D slab photonic crystal is proposed. This design scales to resolve 32 channels spaced by 0.8 nm (100 GHz) in the C band for a dense wavelength division multiplexing system. It is shown that a prism area of 0.017 mm2 is sufficient for the required wavelength resolution using typical silicon-on-insulator technology and that the total chip size would be 4×3 mm2. In order to achieve this, the modest angular dispersion of a 1-D slab photonic crystal is enhanced by considerably expanding the input beam through the superprism region and employing etched mirrors to collimate and focus the light into and out of the superprism. The plane wave expansion method is used to obtain the wave vector diagram and from this we develop design equations based on conventional ray tracing. We then present an optimization approach which minimizes the prism area whilst maintaining the necessary dispersion. Finally the non-uniformity of phase velocity dispersion across the desired spectral window is addressed.

© 2005 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(350.2770) Other areas of optics : Gratings

ToC Category:
Research Papers

Original Manuscript: May 26, 2005
Revised Manuscript: June 29, 2005
Published: July 11, 2005

Aref Bakhtazad and Andrew Kirk, "1-D slab photonic crystal k-vector superprism demultiplexer: analysis, and design," Opt. Express 13, 5472-5482 (2005)

Sort:  Journal  |  Reset  


  1. S. Enoch, G. Tayeb and B. Gralak, �??The richness of the dispersion relation of electromagnetic band gap materials�??, IEEE Trans. Ant. Prop. 51, 2659-2666 (2003). [CrossRef]
  2. S. Kawakami, �??Superprism phenomena in photonic crystals: toward microscale lightwave circuits,�?? J. Lightwave Technol. 17, 2032-2038 (1999). [CrossRef]
  3. L. Wu, M.Mazilu, T.F.Krauss, �??Beam steering in planar-photonic crystals: from superprism to supercollimator�??, J. Lightwave Technol. 21, 561 -566 (2003). [CrossRef]
  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Self-collimiating phenamena in photonic crystal,�?? Appl. Phys. Lett. 74, 1212-1214 (1999). [CrossRef]
  5. T. Matsumoto, and T. Baba, �??Photonic Crystal k-vector superprism,�?? J. Lightwave Technol. 22, 917-922 (2004). [CrossRef]
  6. A. Bakhtazad, A. and A. G. Kirk, �??Superprism effect with planar 1-D photonic crystal�?? Proc. SPIE 5360, 364-372 (2004). [CrossRef]
  7. A. G. Kirk and A. Bakhtazad, �??Dispersion optimization of a 1-D superprism based on phase velocities�?? LEOS 2004, 7-11 November 2004, 879-880 (2004).
  8. C. Luo, M. Soljacic and J.D. Joannopoulos, �??Superprism effect based on phase velocities,�?? Opt. Lett. 29, 745-747 (2004). [CrossRef] [PubMed]
  9. P. Yeh, A. Yariv, and C.S. Hong, �??Electromagnetic propagation in periodic stratified media, I General theory,�?? J. Opt. Soc. Am. 67, 423-437, 1977. [CrossRef]
  10. P. St. Russell, T. A. Birks and F.D. Lloyd-Lucas, in Confined Electrons and Photons, edited by E. Burstein and C. Weisbuch (NATO, Plenum, New York, 1995), p. 585. [CrossRef]
  11. L. Wu, M. Mazilu, J. F. Gallet, T.F. Krauss, A. Jugessur and R.M. De La Rue, �??Planar photonic crystal olarization splitter,�?? Opt. Lett. 29, 1620-1622 (2004). [CrossRef] [PubMed]
  12. W. N. Ye, D. Xu, S. Janz, P. Cheben, A. Delage, M. Picard, B. Lamontage and N. G. Tarr, �??Stress-induced irefringence in silicon-on-insulator (SOI) waveguides, Proc. SPIE 5357, 57-66 (2004). [CrossRef]
  13. H. G. Unger, Planar Optical Waveguides and fibers, (Oxford, UK, Clarendon Press, Oxford Engineering Science Series, 1977).
  14. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J.V. Campenhout, D. Taillaert, B. Luyssaert, P. bienstman, D. V. Thourhout, and R. Baets, �??Low-loss SOI photonic wires and ring resonators fabricated with deep uv lithography,�?? IEEE Phot.onics Technol. Lett. 16, 1328-1330 (2004). [CrossRef]
  15. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R.K. Lee, and Y. Xu, �??Large-bandwidth ultra-low-loss guiding in bi-periodic crystal waveguides,�?? Appl. Phys. B 79, 409-414 (2004). [CrossRef]
  16. T. Baba, A. Motegi, T. Iwai, N. Faoyuki, Y. Wantanabe nad A. Sakai, �??Light propagation characteristic of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on insulator substrate,�?? IEEE J. Quantum Electron. 38, 734-752 (2002). [CrossRef]
  17. K. Okamoto, Fundamentals of optical waveguides, (Academic press, ch. 9, 2000) p. 353. T. Baba and D. Ohsaki, �??Interface of photonic crystal for high efficiency light transmission,�?? Jpn. J. Appl. Phys. 40, 5920-5924 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited