OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 15 — Jul. 25, 2005
  • pp: 5731–5738

Ultra-broad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 μm

A. Saliminia, S. L. Chin, and R. Vallée  »View Author Affiliations

Optics Express, Vol. 13, Issue 15, pp. 5731-5738 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (371 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the observation of efficient and ultra-broadband white light super-continuum generated by focusing femtosecond pulses from an optical parametric amplifier at 1.5 μm in silica glass. The characteristic white light spectrum is extending from 400 nm up to at least 1750 nm. At sufficiently high input powers stable white light patterns associated with the interference of spatially coherent filamentary sources were observed and analyzed. Unlike focusing with 800 nm pulses from a Ti-sapphire laser, the stable fringes formed for each spectral component were pronounced owing to significantly reduced destructive impact of optical breakdown on filamentation of femtosecond pulses at 1.5 μm. By taking advantage of this property, the formation of optical waveguides in silica glass with considerably broader range of writing parameters as compared to those fabricated with 800 nm pulses, was demonstrated.

© 2005 Optical Society of America

OCIS Codes
(160.6030) Materials : Silica
(320.7120) Ultrafast optics : Ultrafast phenomena

ToC Category:
Research Papers

Original Manuscript: May 3, 2005
Revised Manuscript: July 13, 2005
Published: July 25, 2005

Ali Saliminia, S. L. Chin, and R. Vallée, "Ultra-broad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 um," Opt. Express 13, 5731-5738 (2005)

Sort:  Journal  |  Reset  


References are not available for this paper.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited