OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 15 — Jul. 25, 2005
  • pp: 5831–5845

Optimized holographic optical traps

Marco Polin, Kosta Ladavac, Sang-Hyuk Lee, Yael Roichman, and David G. Grier  »View Author Affiliations


Optics Express, Vol. 13, Issue 15, pp. 5831-5845 (2005)
http://dx.doi.org/10.1364/OPEX.13.005831


View Full Text Article

Enhanced HTML    Acrobat PDF (551 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holographic optical traps use the forces exerted by computer-generated holograms to trap, move and otherwise transform mesoscopically textured materials. This article introduces methods for optimizing holographic optical traps’ efficiency and accuracy, and an optimal statistical approach for characterizing their performance. This combination makes possible real-time adaptive optimization.

© 2005 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(100.2960) Image processing : Image analysis
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(140.7010) Lasers and laser optics : Laser trapping

ToC Category:
Research Papers

History
Original Manuscript: April 8, 2005
Revised Manuscript: July 18, 2005
Published: July 25, 2005

Citation
Marco Polin, Kosta Ladavac, Sang-Hyuk Lee, Yael Roichman, and David Grier, "Optimized holographic optical traps," Opt. Express 13, 5831-5845 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-15-5831


Sort:  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu. �??Observation of a single-beam gradient force optical trap for dielectric particles.�?? Opt. Lett. 11, 288�??290 (1986). [CrossRef] [PubMed]
  2. E. R. Dufresne and D. G. Grier. �??Optical tweezer arrays and optical substrates created with diffractive optical elements.�?? Rev. Sci. Instr. 69, 1974�??1977 (1998). [CrossRef]
  3. M. Reicherter, T. Haist, E. U. Wagemann and H. J. Tiziani. �??Optical particle trapping with computer-generated holograms written on a liquid-crystal display.�?? Opt. Lett. 24, 608�??610 (1999). [CrossRef]
  4. J. Liesener, M. Reicherter, T. Haist and H. J. Tiziani. �??Multi-functional optical tweezers using computer-generated holograms.�?? Opt. Commun. 185, 77�??82 (2000). [CrossRef]
  5. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets and D. G. Grier. �??Computer-generated holographic optical tweezer arrays.�?? Rev. Sci. Instr. 72, 1810�??1816 (2001). [CrossRef]
  6. J. E. Curtis, B. A. Koss and D. G. Grier. �??Dynamic holographic optical tweezers.�?? Opt. Commun. 207, 169�??175 (2002). [CrossRef]
  7. D. G. Grier. �??A revolution in optical manipulation.�?? Nature 424, 810�??816 (2003). [CrossRef] [PubMed]
  8. P. T. Korda, G. C. Spalding, E. R. Dufresne and D. G. Grier. �??Nanofabrication with holographic optical tweezers.�?? Rev. Sci. Instr. 73, 1956�??1957 (2002). [CrossRef]
  9. P. T. Korda, M. B. Taylor and D. G. Grier. �??Kinetically locked-in colloidal transport in an array of optical tweezers.�?? Phys. Rev. Lett. 89, 128301 (2002). [CrossRef] [PubMed]
  10. A. Jesacher, S. Furhpater, S. Bernet and M. Ritsch-Marte. �??Size selective trapping with optical �??cogwheel�?? tweezers.�?? Opt. Express 12, 4129�??4135 (2004). [CrossRef] [PubMed]
  11. K. Ladavac, K. Kasza and D. G. Grier. �??Sorting by periodic potential energy landscapes: Optical fractionation.�?? Phys. Rev. E 70, 010901(R) (2004).
  12. M. Pelton, K. Ladavac and D. G. Grier. �??Transport and fractionation in periodic potential-energy landscapes.�?? Phys. Rev. E 70, 031108 (2004). [CrossRef]
  13. S.-H. Lee, K. Ladavac, M. Polin and D. G. Grier. �??Observation of flux reversal in a symmetric optical thermal ratchet.�?? Phys. Rev. Lett. 94, 110601 (2005). [CrossRef] [PubMed]
  14. S.-H. Lee and D. G. Grier. �??Flux reversal in a two-state symmetric optical thermal ratchet.�?? Phys. Rev. E 71, 060102(R) (2005). [CrossRef]
  15. A. Jesacher, S. Fürhapter, S. Bernet and M. Ritsch-Marte. �??Size selective trapping with optical �??cogwheel�?? tweezers.�?? Opt. Express 12, 4129�??4135 (2004). [CrossRef] [PubMed]
  16. V. Soifer, V. Kotlyar and L. Doskolovich. Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, Bristol, PA, 1997).
  17. H. He, N. R. Heckenberg and H. Rubinsztein-Dunlop. �??Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms.�?? J. Mod. Opt. 42, 217�??223 (1995). [CrossRef]
  18. H. He, M. E. J. Friese, N. R. Heckenberg and H. Rubinsztein-Dunlop. �??Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity.�?? Phys. Rev. Lett. 75, 826�??829 (1995). [CrossRef] [PubMed]
  19. K. T. Gahagan and G. A. Swartzlander. �??Optical vortex trapping of particles.�?? Opt. Lett. 21, 827�??829 (1996). [CrossRef] [PubMed]
  20. N. B. Simpson, L. Allen and M. J. Padgett. �??Optical tweezers and optical spanners with Laguerre-Gaussian modes.�?? J. Mod. Opt. 43, 2485�??2491 (1996). [CrossRef]
  21. M. Meister and R. J.Winfield. �??Novel approaches to direct search algorithms for the design of diffractive optical elements.�?? Opt. Commun. 203, 39�??49 (2002). [CrossRef]
  22. J. L. Aragón, G. G. Naumis and M. Torres. �??A multigrid approach to the average lattices of quasicrystals.�?? Acta Cryst. A58, 352�??360 (2002).
  23. K. Svoboda, C. F. Schmidt, B. J. Schnapp and S. M. Block. �??Direct observation of kinesin stepping by optical trapping interferometry.�?? Nature 365, 721�??727 (1993). [CrossRef] [PubMed]
  24. L. P. Ghislain, N. A. Switz and W. W. Webb. �??Measurement of small forces using an optical trap.�?? Rev. Sci. Instr. 65, 2762�??2768 (1994). [CrossRef]
  25. F. Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh and C. F. Schmidt. �??Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations.�?? Phys. Rev. Lett. 79, 3286�??3289 (1997). [CrossRef]
  26. E.-L. Florin, A. Pralle, E. H. K. Stelzer and J. K. H. Hörber. �??Photonic force microscope calibration by thermal noise analysis.�?? Appl. Phys. A 66, S75�??S78 (1998). [CrossRef]
  27. K. Berg-Sørensen and H. Flyvbjerg. �??Power spectrum analysis for optical tweezers.�?? Rev. Sci. Instr. 75, 594�??612 (2004). [CrossRef]
  28. F. Gittes and C. F. Schmidt. �??Interference model for back-focal-plane displacement detection in optical tweezers.�?? Opt. Lett. 23, 7�??9 (1998). [CrossRef]
  29. J. C. Crocker and D. G. Grier. �??Methods of digital video microscopy for colloidal studies.�?? J. Colloid Interface Sci. 179, 298�??310 (1996). [CrossRef]
  30. G. E. P. Box and G. M. Jenkins. Time Series Analysis: Forecasting and Control (Holden-Day, San Francisco, 1976).
  31. H. Risken. The Fokker-Planck Equation (Springer-Verlag, Berlin, 1989), 2nd ed. [CrossRef]
  32. M. Polin, D. G. Grier and S. Quake. �??Anomalous vibrational dispersion in holographically trapped colloidal arrays.�?? Phys. Rev. Lett. submitted for publication (2005). [PubMed]
  33. P. T. Korda, G. C. Spalding and D. G. Grier. �??Evolution of a colloidal critical state in an optical pinning potential.�?? Phys. Rev. B 66, 024504 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited