OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 17 — Aug. 22, 2005
  • pp: 6445–6453

Microstructure of femtosecond laser-induced grating in amorphous silicon

Geon Joon Lee, Jisun Park, Eun Kyu Kim, YoungPak Lee, Kyung Moon Kim, Hyeonsik Cheong, Chong Seung Yoon, Yong-Duck Son, and Jin Jang  »View Author Affiliations

Optics Express, Vol. 13, Issue 17, pp. 6445-6453 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (5194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The femtosecond laser-induced grating (FLIG) formation and crystallization were investigated in amorphous silicon (a-Si) films, prepared on glass by plasma-enhanced chemical-vapor deposition. Probe-beam diffraction, micro-Raman spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy were employed to characterize the diffraction properties and the microstructures of FLIGs. It was found that i) the FLIG can be regarded as a pattern of alternating a-Si and microcrystalline-silicon (μc-Si) lines with a period of about 2 μm, and ii) efficient grating formation and crystallization were achieved by high-intensity recording with a short writing period.

© 2005 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(160.2750) Materials : Glass and other amorphous materials
(300.6450) Spectroscopy : Spectroscopy, Raman
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Research Papers

Original Manuscript: June 15, 2005
Revised Manuscript: August 5, 2005
Published: August 22, 2005

Geon Joon Lee, Jisun Park, Eun Kim, YoungPak Lee, Kyung Kim, Hyeonsik Cheong, Chong Yoon, Yong-Duck Son, and Jin Jang, "Microstructure of femtosecond laser-induced grating in amorphous silicon," Opt. Express 13, 6445-6453 (2005)

Sort:  Journal  |  Reset  


  1. D. E. Carlson, and C.R. Wronski, "Amorphous silicon solar cell," Appl. Phys. Lett. 28, 671-673 (1976). [CrossRef]
  2. B. K. Nayak, B. Eaton, J. A. A. Selvan, J. Mcleskey, M. C. Gupta, R. Romero, and G. Ganguly, "Semiconductor laser crystallization of a-Si:H on conducting tin-oxide-coated glass for solar cell and display applications," Appl. Phys. A 80, 1077-1080 (2005). [CrossRef]
  3. T. Suzuki, and S. Adachi, "Optical properties of amorphous Si partially crystallized by thermal annealing," Jpn. J. Appl. Phys. 32, 4900-4906 (1993). [CrossRef]
  4. J. S. Im, and H. J. Kim, "Phase transformation mechanisms involved in excimer laser crystallization of amorphous sillicon films," Appl. Phys. Lett. 63, 1969-1971 (1993). [CrossRef]
  5. M. Miyasaka, and J. Stoemenos, "Excimer laser annealing of amorphous and solid-phase-crystallized sillicon films," J. Appl. Phys. 86, 5556-5565 (1999). [CrossRef]
  6. S. Y. Yoon, J. Y. Oh, C. O. Kim, and J. Jang, "Low temperature solid-phase crystallization of amorphous sillicon at 380 °C," J. Appl. Phys. 84, 6463-6465 (1998). [CrossRef]
  7. A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono. T. Suzuki, K. Miyata, and H. Kawakami, "High performance low-temperature poly-Si n-channel TFT's for LCD," IEEE Trans. Electron Devices 36, 351-359 (1989). [CrossRef]
  8. J. S. Im, and H. J. Kim, "On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films," Appl. Phys. Lett. 64, 2303-2305 (1994). [CrossRef]
  9. A. T. Voutsas, A. Limanov, and J. S. Im, "Effect of process parameters on the structural characteristics of laterally grown, laser-annealed polycrystalline silicon films," J. Appl. Phys. 94, 7445-7452 (2003). [CrossRef]
  10. C. Hayzelden, and J. L. Batstone, "Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films," J. Appl. Phys. 73, 8279-8289 (1993). [CrossRef]
  11. J. Jang, J. Y. Oh, S. K. Kim, K. J. Cho, S. Y. Yoon, and C. O. Kim, "Electric-field-enhanced crystallization of amorphous silicon," Nature (London) 395, 481-483 (1998). [CrossRef]
  12. J.-M. Sieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, "Near-infrared femtosecond laser-induced crystallization of amorphous silicon," Appl. Phys. Lett. 85, 1232-1234 (2004). [CrossRef]
  13. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996). [CrossRef]
  14. Y. Kuroiwa, N. Takeshima, Y. Narita, and S. Tanaka, "Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements," Opt. Express 12, 1908-1915 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URL=OPEX-12-9-1908">http://www.opticsexpress.org/abstract.cfm?URL=OPEX-12-9-1908</a>. [CrossRef] [PubMed]
  15. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond," Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  16. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices: Micromachines can be created with higher resolution using two-photon absorption," Nature (London) 412, 697-698 (2001). [CrossRef]
  17. Z. Iqbal, and S. Veprek, "Raman scattering from hydrogenated microcrystalline and amorphous silicon," J. Phys. C: Solid State Phys. 15, 377-392 (1982). [CrossRef]
  18. L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, "Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth," Philos. Mag. A 77, 1447-1460 (1998). [CrossRef]
  19. T. Sameshima, "Laser processing for thin film transistor applications," Mater. Sci. Eng. B 45, 186-193 (1997). [CrossRef]
  20. G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, S. Christiansen, M. Albrecht, and H. P. Strunk, "Dynamics of lateral grain growth during the laser interference crystallization of a-Si," J. Appl. Phys. 85, 4010-4023 (1999) . [CrossRef]
  21. C.-H. Oh, M. Ozawa, and M. Matsumura, "A novel phase-modulated excimer-laser crystallization method of silicon thin films," Jpn. J. Appl. Phys. 37, L492-L495 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited