OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 17 — Aug. 22, 2005
  • pp: 6626–6634

Efficient and individually controllable mechanisms for mode and polarization selection in VCSELs, based on a common, localized, sub-wavelength surface grating

Johan S. Gustavsson, Åsa Haglund, Josip A. Vukušić, Jörgen Bengtsson, Piotr Jedrasik, and Anders Larsson  »View Author Affiliations


Optics Express, Vol. 13, Issue 17, pp. 6626-6634 (2005)
http://dx.doi.org/10.1364/OPEX.13.006626


View Full Text Article

Enhanced HTML    Acrobat PDF (299 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have theoretically investigated the combined fundamental-mode and polarization selection in 850-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) using a locally etched sub-wavelength surface grating. The physical mechanisms behind the selection are, first, the strongly polarization sensitive effective refractive index of the volume occupied by the grating structure, and second, the dramatic change of the reflectivity of a multi-layer Bragg mirror that can occur by simply changing the refractive index of the outermost layer. For a VCSEL cavity this layer is the surface layer and its refractive index is changed by the introduction of the sub-wavelength grating; in this case the grating leads to a higher reflectivity for the desired polarization. By localizing the surface grating area to a carefully chosen region near the optical axis it is therefore possible to ensure that the fundamental mode experiences a high reflectivity, or low cavity loss, while other modes experience more of the low-reflectance region of the peripheral part of the Bragg mirror and thus suffer higher loss. Cold-cavity calculations on a VCSEL with oxide aperture and grating region diameters of 4.5 μm and 2.5 μm, respectively, indicate that a loss difference of ~20 cm-1 between the fundamental mode and the first higher order mode can be obtained simultaneously with an orthogonal polarization mode discrimination of >15 cm-1. Based on previous experience, these values should enable robust single-mode operation with only the desired polarization orientation. What is also important, for the lasing mode the introduction of a sub-wavelength grating has no detrimental effect, so its characteristics, such as threshold current, slope efficiency, and far-field profile are unaffected. Moreover, since the effective index is a result of an averaging over several sub-wavelength grating periods, it is fairly insensitive to the detailed shape of the grating grooves, which should relax the fabrication tolerances.

© 2005 Optical Society of America

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:
Research Papers

History
Original Manuscript: July 15, 2005
Revised Manuscript: August 15, 2005
Published: August 22, 2005

Citation
Johan Gustavsson, �?sa Haglund, Josip Vukuši�?, Jörgen Bengtsson, Piotr Jedrasik, and Anders Larsson, "Efficient and individually controllable mechanisms for mode and polarization selection in VCSELs, based on a common, localized, sub-wavelength surface grating," Opt. Express 13, 6626-6634 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-17-6626


Sort:  Journal  |  Reset  

References

  1. H. J. Unold, M. C. Riedl, S. W. Z. Mahmoud, R. Jäger, and K. J. Ebeling, �??Long monolithic cavity VCSELs for high singlemode output power,�?? Electron. Lett. 37(3), 178�??179 (2001). [CrossRef]
  2. D. Zhou and L. J. Mawst, �??High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,�?? IEEE J. Quantum Electron. 38, 1599�??1606 (2002). [CrossRef]
  3. �?. Haglund, J. S. Gustavsson, J. Vukuši�?, P. Modh, and A. Larsson, �??Single fundamental mode output power exceeding 6 mW from VCSELs with a shallow surface relief,�?? IEEE Photon. Techn. Lett. 16, 368�??370 (2004). [CrossRef]
  4. S. J. Schablitsky, L. Zhuang, R. C. Shi, and S. Y. Chou, �??Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings,�?? Appl. Phys. Lett. 69, 7�??9 (1996). [CrossRef]
  5. J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, �??Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings,�?? Appl. Phys. Lett. 66, 2769�??2771 (1995). [CrossRef]
  6. Y. Hong, R. Ju, S. Spencer, and K. A. Shore, �??Investigation of polarization bistability in vertical-cavity surface-emitting lasers subjected to optical feedback,�?? IEEE J. Quantum Electron. 41, 619�??624 (2005). [CrossRef]
  7. K.-H. Lee, J.-H. Baek, I.-K. Hwang, and Y.-H. Lee, �??Square-lattice photonic-crystal vertical-cavity surface-emitting lasers,�?? Opt. Express 12, 4136�??4143 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4136."> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4136.</a> [CrossRef] [PubMed]
  8. K. D. Choquette and R. E. Leibenguth, �??Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,�?? IEEE Photon. Techn. Lett. 6, 40�??42 (1994). [CrossRef]
  9. K. Panajotov, R. Kotynski, M. Camarena, and H. Thienpont, �??Modeling of the polarization behavior of elliptical surface-relief VCSELs,�?? Opt. Quantum Electron. 37, 241�??252 (2005). [CrossRef]
  10. J. M. Ostermann, P. Debernardi, C. Jalics, A. Kroner, M. C. Riedl, and R. Michalzik, �??Surface gratings for polarization control of single- and multi-mode oxide-confined vertical-cavity surface-emitting lasers,�?? Opt. Commun. 246, 511�??519 (2005). [CrossRef]
  11. �?. Haglund, J. S. Gustavsson, J. Vukuši�?, P. Jedrasik, and A. Larsson, �??High-power fundamental-mode and polarization stabilized VCSELs using a sub-wavelength surface grating,�?? Electron. Lett. 41(14), 37�??38 (2005). [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon Press, Bath, Great Britain, 1970).
  13. G. R. Hadley, �??Effective index model for vertical-cavity surface-emitting lasers,�?? Opt. Lett. 20, 1483�??1485 (1995). [CrossRef] [PubMed]
  14. M. A. Afromowitz, �??Refractive index of Ga1�??xAlxAs,�?? Solid State Comm. 15(1), 59�??63 (1974). [CrossRef]
  15. D. Kuksenkov and H. Temkin, �??Polarization Related Properties of Vertical-Cavity Lasers,�?? in Vertical-Cavity Surface-Emitting Lasers, C. Wilmsen, H. Temkin, and L. A. Coldren, eds. (Cambridge University Press, Cambridge, U.K., 1999), pp. 233�??267
  16. N. Nishiyama, M. Arai, S. Shinada, M. Azuchi, T. Miyamoto, F. Koyama, and K. Iga, �??Highly strained GaInAs-GaAs quantum-well vertical-cavity surface-emitting laser on GaAs (311)B substrate for stable polarization operation,�?? IEEE J. Sel. Top. Quantum Electron. 7, 242�??248 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited