OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 17 — Aug. 22, 2005
  • pp: 6645–6650

Novel surface plasmon waveguide for high integration

Liu Liu, Zhanghua Han, and Sailing He  »View Author Affiliations

Optics Express, Vol. 13, Issue 17, pp. 6645-6650 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (533 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel surface plasmon waveguide structure is proposed for highly integrated planar lightwave circuits. By etching a small trench through a metallic thin film on a silica substrate, a guided mode with highly confined light fields is realized. The mode properties of the proposed structure are studied. The necessity of using a polymer upper-cladding is discussed. The coupling between two closely positioned waveguides and a 90° bending are also studied numerically. Sharp bending and high integration can be realized with the present surface plasmon waveguide. The proposed structure is easy to fabricate as compared with some other types of surface plasmon waveguides for high integration.

© 2005 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

Original Manuscript: July 5, 2005
Revised Manuscript: August 15, 2005
Published: August 22, 2005

Liu Liu, Zhanghua Han, and Sailing He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005)

Sort:  Journal  |  Reset  


  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, �??Microphotonics Devices Based on Silicon Microfabrication Technology,�?? IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005). [CrossRef]
  2. V. R. Almeida, Q. Xu, C. A. Barrios, R. R. Panepucci, and M. Lipson, �??Guiding and confining light in void nanostructure,�?? Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, 1995).
  4. H. Raether, Surface Plasmons (Springer, Berlin, 1988).
  5. T. Goto, Y. Katagiri, H. Fukuda, and H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, �??Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,�?? Appl. Phys. Lett. 84, 852-854 (2004). [CrossRef]
  6. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, �??Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,�?? Opt. Express 13, 977-984 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-977</a> [CrossRef] [PubMed]
  7. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, �??Geometries and materials for subwavelength surface plasmon modes,�?? J. Opt. Soc. Am. A 21, 2442-2446 (2004). [CrossRef]
  8. D. M. Pozar, Microwave Engineering (2nd ed. John Wiley and Sons, 1998).
  9. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, �??Propagation properties of guided waves in index-guided two-dimensional optical waveguides,�?? Appl. Phys. Lett. 86, 211101 (2005). [CrossRef]
  10. K. Tanaka, and M. Tanaka, �??Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,�?? Appl. Phys. Lett. 82, 1158-1160 (2003). [CrossRef]
  11. K. Tanaka, M. Tanaka, and T. Sugiyama, �??Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,�?? Opt. Express 13, 256-266 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-256">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-256</a> [CrossRef] [PubMed]
  12. W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, �??Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,�?? Phys. Rev. B 59, 12661-12666 (1999). [CrossRef]
  13. I. V. Novikov, and A. A. Maradudin, �??Channel polaritons,�?? Phys. Rev. B 66, 035403 (2002). [CrossRef]
  14. D. F. P. Pile and D. K. Gramotnev, �??Channel plasmon-polariton in a triangular groove on a metal surface,�?? Opt. Lett. 29, 1069-1071 (2004). [CrossRef] [PubMed]
  15. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, �??Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,�?? Phys. Rev. Lett. 95, 046802 (2005) [CrossRef] [PubMed]
  16. N. N. Feng, G. R. Zhou, and W. P. Huang, �??Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers,�?? J. Lightwave Technol. 20, 1976-1980 (2002). [CrossRef]
  17. A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1998).
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited