OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 18 — Sep. 5, 2005
  • pp: 6685–6692

Fabrication of a high-resolution periodical structure using a replication process

Wei-Ching Chuang, Chi-Ting Ho, and Wei-Chih Wang  »View Author Affiliations


Optics Express, Vol. 13, Issue 18, pp. 6685-6692 (2005)
http://dx.doi.org/10.1364/OPEX.13.006685


View Full Text Article

Acrobat PDF (759 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a procedure for rapidly and conveniently prototyping a periodic structure at submicrometer order using holographic interferometry and micro-molding processes. In this experiment, the master of the periodic structure was created on an i-line submicrometer positive photoresist film by a holographic interference using a He-Cd (325nm) laser. A subsequent mold using polydimethylsiloxane (PDMS) polymer was cast against this master and used as a stamp to transfer the grating pattern onto a UV cure epoxy. The technique shows accurate control for the transferring of a grating�??s period and depth. The grating pattern on the epoxy produced by the PDMS mold shows an average of less than 2% error in the grating period and an average of 15% error in depth reproduction.

© 2005 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.1970) Holography : Diffractive optics
(090.2880) Holography : Holographic interferometry
(220.4610) Optical design and fabrication : Optical fabrication
(230.1950) Optical devices : Diffraction gratings

ToC Category:
Research Papers

History
Original Manuscript: June 1, 2005
Revised Manuscript: July 26, 2005
Published: September 5, 2005

Citation
Wei-Ching Chuang, Chi-Ting Ho, and Wei-Chih Wang, "Fabrication of a high-resolution periodical structure using a replication process," Opt. Express 13, 6685-6692 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6685


Sort:  Journal  |  Reset

References

  1. N. Imoto, �??An analysis for contradirectional-coupler-type optical grating filters,�?? J. Lightwave Technol. 3, 895-900 (1985).
  2. H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, �??Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,�?? J. Lightwave Technol. 13, 1905-1912 (1995). [CrossRef]
  3. C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, �??Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,�?? IEEE J. Quantum Electron 32, 1752-1759 (1996). [CrossRef]
  4. Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, �??Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,�?? IEEE Photonics Technol. Lett. 8, 87-89 (1996). [CrossRef]
  5. A. Sharon, D. Rosenblatt, and A. A. Friesem, �??Narrow spectral bandwidths with grating waveguide structures,�?? Appl. Phys. Lett. 69, 4154-4156 (1996). [CrossRef]
  6. S. Yin, F. T. S. Yu, and S. Wu, �??Optical monitoring for plasma-etching depth process,�?? IEEE Photonics Technol. Lett. 4, 894-896 (1992). [CrossRef]
  7. W.C. Wang, W.C. Chuang, C.T. Ho, Y.R. Lian, C.K. Chao, and R.F. Shyu,�??A new novel means of transducing tensile stress,�?? in Proceedings of Progress in Electromagnetics Research Symposium, Z.A. Kong, ed. (Hangzhou, China, 2005), pp.89-91.
  8. D. Y. Kim, S. K. tripathy, L. Li, and J. Kumar, �??Laser-induced holographic surface relief gratings on nonlinear optical polymer films,�?? Appl. Phys. Lett. 66, 1166-1168 (1995). [CrossRef]
  9. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, �??Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,�?? Appl. Phys. Lett. 82, 3823-3825 (2003). [CrossRef]
  10. S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, �??Realization of integrated Bragg reflectors in DANs-polymer waveguides,�?? J. Lightwave Technol. 11, 1189-1195 (1993). [CrossRef]
  11. H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, �??Electron-beam directly written micro gratings for integrated optical circuits,�?? in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE, 134, 152-159 (1980).
  12. C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, �??Direct writing of silicon gratings with highly coherent ultraviolet laser,�?? Appl. Phys. Lett. 71, 2442-2444 (1997). [CrossRef]
  13. N.Mukherjee, B.J. Eapen, D.M. Keicher, S.Q. Luong, and A. Mukherjee, �??Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate�??, Appl. Phys. Lett. 67,3715-3717 (1995). [CrossRef]
  14. L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, �??Integrated multichannel OADMS using polymer Bragg grating MZIS,�?? IEEE, Photonics Technol. Lett. 10, 1416-1418 (1998). [CrossRef]
  15. K. O. Hill, B. Malo, D. Bilodeau, D. C. Johnson and J. Albert, �??Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,�?? Appl. Phys. Lett. 62, 1035-1037 (1993). [CrossRef]
  16. D. J. Kang, J. K. Kim, and B. S. Bae, �??Simple fabrication of diffraction gratings by two beam interference method in highly photosensitivity hybrid sol-gel films,�?? Opt. Express 12, 3947-3953 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3947.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3947</a> [CrossRef]
  17. Holger Becker and Wolfram Dietz, �??Microfluidic devices for TAS applications fabricated by polymer hot embossing,�?? in Microfluid Devices and Systems, A. B. Frazier and C. H. Ahn, eds., Proc. SPIE 3515, 177-181 (1998).
  18. P. M. Ferm and L. W. Shackjette, �??High volume manufacturing of polymer waveguides via UV- Embossing,�?? in Linear,Nonlinear, and Power-Limiting Organics, E. Manfred, et al., eds., Proc. SPIE 4106, 1-10 (2000).
  19. K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, �??Maskless Photolithography: embossed photoresister as its own optical element,�?? Appl. Phys. Lett. 73, 2893-2895 (1998). [CrossRef]
  20. X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, �??Demonstration of waveguide couplers fabricated using microtransfer molding,�?? Appl. Phys. Lett. 71, 1017-1019 (1997). [CrossRef]
  21. H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, �??Polymer waveguide devices with passive pigtailing: an application of LIGA technology,�?? Synth. Metals 115, 13-20 (2000).
  22. J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, �??The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,�?? J. Micromech. Microeng. 7, 145-147(1997). [CrossRef]
  23. P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, �??Simple technique for replication of micro-optical elements,�?? Opt. Eng. 37, 1804-1808 (1998). [CrossRef]
  24. M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, �??Wafer-scale micro-optics replication technology,�?? in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148-154 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited