OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 18 — Sep. 5, 2005
  • pp: 6937–6946

Hollow-core PCF for guidance in the mid to far infra-red

G. Pearce, J. Pottage, D. Bird, P. Roberts, J. Knight, and P. Russell  »View Author Affiliations

Optics Express, Vol. 13, Issue 18, pp. 6937-6946 (2005)

View Full Text Article

Acrobat PDF (727 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A major limitation to attaining low-loss single-mode guidance in hollow core photonic crystal fibre (PCF) is surface guided modes that are trapped in the core surround. This is particularly severe when high index (n > 2) glasses are used. By modelling a structure that has the characteristic features of a realistic fibre we show that, by tuning the thickness of the core wall, the influence of these �??surface�?? modes can be minimised. For a refractive index of 2.4 we predict power-in-air fractions of over 95% over a fractional bandwidth of ~ 5%, peaking at over 98%. The designs are appropriate for mid- to far-IR PCFs for which suitable glasses (e.g., tellurites and chalcogenides) have high refractive indices.

© 2005 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2390) Fiber optics and optical communications : Fiber optics, infrared

ToC Category:
Research Papers

Original Manuscript: June 10, 2005
Revised Manuscript: August 23, 2005
Published: September 5, 2005

G. Pearce, J. Pottage, D. Bird, P. Roberts, J. Knight, and P. Russell, "Hollow-core PCF for guidance in the mid to far infra-red," Opt. Express 13, 6937-6946 (2005)

Sort:  Journal  |  Reset


  1. P. St.J. Russell, �??Photonic crystal fibers,�?? Science 299, 358�??362 (2003). [CrossRef]
  2. G. Humbert, J. C. Knight, G. Bouwmans, P. St.J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, �??Hollow core photonic crystal fibers for beam delivery,�?? Opt. Express 12, 1477�??1484 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1477."> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1477.</a> [CrossRef]
  3. F. Benabid, G. Bouwmans, J. C. Knight, P. St.J. Russell, and F. Couny, �??Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,�?? Phys. Rev. Lett. 93, 123903 (2004). [CrossRef]
  4. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, �??Resonant Optical Interactions with Molecules Confined in Photonic Band-Gap Fibers,�?? Phys. Rev. Lett. 94, 093902 (2005). [CrossRef]
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, �??Single-Mode Photonic Band Gap Guidance of Light in Air,�?? Science 285, 1537�??1439 (1999). [CrossRef]
  6. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. M¨uller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657�??659 (2003). [CrossRef]
  7. J. M. Pottage, D. M. Bird, T. D. Hedley, T. A. Birks, J. C. Knight, P. St.J. Russell, and P. J. Roberts, �??Robust photonic band gaps for hollow core guidance in PCF made from high index glass,�?? Opt. Express 11, 2854�??2861 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2854."> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2854. </a>
  8. J. S. Wang, E. M. Vogel, and E. Snitzer, �??Tellurite glass: a new candidate for fiber devices,�?? Opt. Mater. 3, 187�??203 (1994).
  9. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, �??Chalcogenide holey fibres,�?? Electron. Lett. 36, 1998�??2000 (2000). [CrossRef]
  10. D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. M¨uller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, �??Surface modes and loss in air-core photonic band-gap fibres,�?? in Photonic Crystal Materials and Devices, A. Adibi, A. Scherer, and S. Y. Lin, eds., Proc. SPIE 5000 (2003).
  11. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allen, and K. W. Koch, �??Surface modes in air-core photonic-bandgap fibers,�?? Opt. Express 12, 1485�??1496 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485</a> [CrossRef]
  12. K. Saitoh, N. A. Mortensen, and M. Koshiba, �??Air-core photonic band-gap fibers: the impact of surface modes,�?? Opt. Express 12, 394�??400 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394</a> [CrossRef]
  13. M. J. F. Digonnet, H. K. Kim, J. Shin, S. Fan, and G. S. Kino, �??Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers,�?? Opt. Express 12, 1864�??1872 (2004).<a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1884"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1884</a> [CrossRef]
  14. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, �??Designing Air-Core Photonic-Bandgap Fibers Free of Surface Modes,�?? IEEE J. Quantum Electron. 40, 551�??556 (2004). [CrossRef]
  15. H. K. Kim, M. J. F. Digonnet, G. S. Kino, J. Shin, and S. Fan, �??Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers,�?? Opt. Express 12, 3436�??3442 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3436"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3436</a> [CrossRef]
  16. P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Williams, and L. Farr, �??Achieving low loss and low nonlinearity in hollow core photonic crystal fibers,�?? paper CWA7 presented at CLEO 2005 Baltimore USA, May 2005.
  17. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St.J. Russell are preparing a manuscript to be called �??Realizing low loss air core photonic crystal fibres by exploiting an antiresonant core surround.�??
  18. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  19. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173�??190 (2001). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>
  20. G. J. Pearce, T. D. Hedley, and D. M. Bird, �??Adaptive curvilinear coordinates in a plane-wave solution of Maxwell�??s equations in photonic crystals,�?? Phys. Rev. B 71, 195108 (2005). [CrossRef]
  21. Y. Saad, Iterative methods for sparse linear systems (PWS, Boston, 1996).
  22. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (SIAM, Philadelphia, 1994).
  23. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, �??Antiresonant reflecting photonic crystal optical waveguides,�?? Opt. Lett. 27, 1592�??1594 (2002).
  24. R. Guobin,W. Zhi, L. Shuqin, and J. Shuisheng, �??Mode classification and degeneracy in photonic crystal fibers,�?? Opt. Express 11, 1310�??1321 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-11-1310"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-11-1310</a>
  25. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, �??Ultimate low loss of hollow-core photonic crystal fibres,�?? Opt. Express 13, 236�??244 (2005). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236</a>

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited