OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 18 — Sep. 5, 2005
  • pp: 6964–6973

Numerical simulation of surface-plasmon-assisted nanolithography

D. B. Shao and S. C. Chen  »View Author Affiliations

Optics Express, Vol. 13, Issue 18, pp. 6964-6973 (2005)

View Full Text Article

Acrobat PDF (164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, based on numerical study using Finite Difference Time Domain method, we discuss two possible illumination schemes utilizing surface plasmon effects to achieve high density sub-100 nm scale photolithography by using ultraviolet light from a mercury lamp. In the illumination schemes discussed in this paper, a thin film layer, named as shield layer, is placed in between a photoresist layer and a silicon substrate. In the first scheme, the shield material is titanium. Simulations show that the surface plasmons excited on both the metallic mask and the titanium shield enable the transfer of high density nanoscale pattern using mercury lamp emission. In the second scheme, a silicon dioxide layer is used instead of the titanium to avoid possible metal contamination. The two schemes discussed in this paper offer convenient, low cost, and massive pattern transfer methods by simple adjustment to the traditional photolithography method.

© 2005 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Research Papers

Original Manuscript: July 11, 2005
Revised Manuscript: August 24, 2005
Published: September 5, 2005

D. B. Shao and S. C. Chen, "Numerical simulation of surface-plasmon-assisted nanolithography," Opt. Express 13, 6964-6973 (2005)

Sort:  Journal  |  Reset


  1. S. Okazaki, �??Resolution limits of optical lithography,�?? J. Vac. Sci. Technol. B 9, 2829-2833 (1991). [CrossRef]
  2. R. Kunz, M. Rothschild and M. S. Yeung, �??Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,�?? J. Vac. Sci. Technol. B 21, 78 (2003). [CrossRef]
  3. J. G. Goodberlet and H. Kavak, �??Patterning Sub-50 nm features with near-field embedded-amplitude masks,�?? Appl. Phys. Lett. 81, 1315 (2002). [CrossRef]
  4. H. Schmid, H. Biebuyck, B. Michel and O. J. F. Martin, �??Light-coupling masks for lensless, sub-wavelength optical lithography,�?? Appl. Phys. Lett. 72, 2379 (1998). [CrossRef]
  5. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cummingb, �??Sub-diffraction-limited patterning using evanescent near-field optical lithography,�?? Appl. Phys. Lett. 75, 3560 (1999). [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature (London) 391, 667-669 (1999). [CrossRef]
  7. L. Salomon, F. Grillot, A. V. Zayats and F. de Fornel, �??Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,�?? Phys. Rev. Lett. 86, 1110 (2001). [CrossRef]
  8. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin and T. Thio, �??Crucial role of metal surface in enhanced transmission through subwavelength apertures,�?? Appl. Phys. Lett. 77, 1569 (2000). [CrossRef]
  9. H. Raether, �??Surface Plasmons on Smooth and Rough Surfaces and on Gratings,�?? Berlin, 1988.
  10. J. B. Pendry, �??Playing tricks with light,�?? Science 285, 1687-1688 (2002). [CrossRef]
  11. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, �??Theory of light transmission through subwavelength periodic hole arrays,�?? Phys. Rev. B. 62 16100 (2000). [CrossRef]
  12. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, �??Surface Plasmonic Lithography,�?? Nano Lett. 4, 1085 (2004). [CrossRef]
  13. X. Luo, T. Ishihara, �??Surface plasmon resonant interference nanolithography technique,�?? Appl. Phys. Lett. 84, 4780 (2004). [CrossRef]
  14. J. B. Pendry, �??Negative refraction makes a perfect lens,�?? Phys. Rev. Lett. 85, 3966 (2000). [CrossRef]
  15. D.B. Shao, S.C. Chen, �??Surface-Plasmon-Assisted Nanoscale Photolithography by Polarized Light,�?? Appl. Phys. Lett. 86, 253107 (2005). [CrossRef]
  16. K. S. Yee, �??Numerical solution of initial boundary value problems involving Maxwell�??s equations in isotropic media,�?? IEEE Trans. Antennas Propag. 14, 302, May 1966. [CrossRef]
  17. J. P. Berenger, �??A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,�?? J. Comput. Phys. 114, 185 (1994). [CrossRef]
  18. S. K. Gray and T. Kupka, �??Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,�?? Phys. Rev. B 68, 045415 (2003). [CrossRef]
  19. E. D. Palik, �??Handbook of optical constants of solids,�?? Academic Press, Orlando, 1985.
  20. P. W. Barber, S. C. Hill, �??Light Scattering by Particles: Computational Methods,�?? World Scientific, Singapore, 1990.
  21. J. T. Krug II, E. J. Sánchez, and X. S. Xie, �??Design of Near-field Optical Probes with Optimal Field Enhancement by Finite Difference Time Domain Electromagnetic Simulation,�?? J. Chem. Phys. 116, 10895 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited