OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 18 — Sep. 5, 2005
  • pp: 6990–7004

Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model

John Kelly, Michael Gleeson, Ciara Close, Feidhlim O'Neill, John Sheridan, Sergi Gallego, and Cristian Neipp  »View Author Affiliations

Optics Express, Vol. 13, Issue 18, pp. 6990-7004 (2005)

View Full Text Article

Acrobat PDF (240 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlocal polymerization-driven diffusion model (NPDD) has been shown to predict high spatial frequency cut-off in photopolymers and to accurately predict higher order grating components. We propose an extension to the NPDD model to account for the temporal response associated with polymer chain growth. An exponential response function is proposed to describe transient effects during the polymerization process. The extended model is then solved using a finite element technique and the nature of grating evolution examined in the case when illumination is stopped prior to the saturation of the grating recording process. Based on independently determined refractive index measurements we determine the temporal evolution of the refractive index modulation and the resulting diffraction efficiency using rigorous coupled wave theory. Material parameters are then extracted based on fits to experimental data for nonlinear and both ideal and non-ideal kinetic models.

© 2005 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.2900) Holography : Optical storage materials

ToC Category:
Research Papers

Original Manuscript: June 23, 2005
Revised Manuscript: August 16, 2005
Published: September 5, 2005

John Kelly, Michael Gleeson, Ciara Close, Feidhlim O'Neill, John Sheridan, Sergi Gallego, and Cristian Neipp, "Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model," Opt. Express 13, 6990-7004 (2005)

Sort:  Journal  |  Reset


  1. S. Schultz, E. Glytsis, T. Gaylord, �??Design, Fabrication, and Performance of Preferential-Order Volume Grating Waveguide Couplers,�?? Appl. Opt. 39, 1223-1232 (2000).
  2. L. Dahr, A, Hale, K. Kurtis, M. Schnoes, M. Tackitt, W. Wilson, A. Hill, M. Schilling, H. Katz, A. Olsen, �??Photopolymer Recording Media for High Density Data Storage,�?? in Proceedings of IEEE conference on Optical Data Storage Conference (Institute of Electrical and Electronics Engineers, Canada, 2000) pp. 158-160.
  3. J. T. Sheridan, F. T. O�?? Neill, J. V. Kelly, �??Holographic Data Storage: Optimized Scheduling using the Non-local Polymerization Driven Diffusion Model,�?? J. Opt. Soc. Am. B 21, 1443-1451 (2004). [CrossRef]
  4. J. R. Lawrence, F. T. O�??Neill, �??Photopolymer holographic recording material,�?? Optik (The International Journal for Light and Electron Optics) 112, 449-463 (2001).
  5. G. Zhao, P. Mouroulis, �??Diffusion model of hologram formation in dry photopolymer materials,�?? J. Mod. Opt. 41, 1929-1939 (1994).
  6. J. T. Sheridan, J. R. Lawrence, �??Non-local response diffusion model of holographic recording in photopolymer,�?? J. Opt. Soc. Am. A 17, 1108-1114 (2000).
  7. J. H. Kwon, H. C. Chang, K. C. Woo, �??Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,�?? J. Opt. Soc. Am. B 16, 1651-1657 (1999).
  8. G. Odian, Principles of Polymerization (Wiley, New York, 1991)
  9. J. R. Lawrence, F. T. O�??Neill, J. T. Sheridan, �??Adjusted intensity nonlocal diffusion model of photopolymer grating formation,�?? J. Opt. Soc. Am. B 19, 621-624 (2002).
  10. J. V. Kelly, F. T. O�??Neill, J. T. Sheridan, C. Neipp, S. Gallego, M. Ortuno, �??Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,�?? J. Opt. Soc. Am. B 22, 407-416 (2005). [CrossRef]
  11. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, �??Photopolymerization model for holographic gratings formation in photopolymers,�?? Appl. Phys. B 77, 639-662 (2003). [CrossRef]
  12. S. Massenot, J.-L. Kaiser, R. Chevallier, Y. Renotte, �??Study of the Dynamic Formation of Transmission Gratings Recorded in Photopolymers and Holographic Polymer-Dispersed Liquid Crystals,�?? Appl. Opt. 43, 5489-5497 (2004). [CrossRef]
  13. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, "Phenomenological model of anisotropic volume hologram formation in liquid-rystal-photopolymer mixtures,�?? J. Appl. Phys. 96, 951-965 (2004). [CrossRef]
  14. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, J. T. Sheridan, �??Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,�?? Opt. Express 13, 1939 (2005). [CrossRef]
  15. . S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, J. T. Sheridan, �??3 Dimensional analysis of holographic photopolymers based memories,�?? Opt. Express 13, 3543 (2005). [CrossRef]
  16. S.-D. Wu, E. Glytsis, �??Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis,�?? J. Opt. Soc. Am. B 20, 1177-1188 (2003).
  17. I. Aubrecht, M. Miller, I. Koudela, �??Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,�?? J. Mod. Opt. 45, 1465-1477 (1998).
  18. M. G. Moharam, T.K. Gaylord, �??Rigorous Coupled-Wave analysis of planar-grating diffraction,�?? J. Opt. Soc. Am. 71, 811-818 (1981).
  19. J. T. Sheridan, J. V. Kelly, G. O�??Brien, M. R. Gleeson, F. T. O�??Neill, �??Generalized non-local responses and higher harmonic retention in non-local polymerization driven diffusion model based simulations,�?? J. Opt. A: Pure Appl. Opt. 6 1089-1096 (2004). [CrossRef]
  20. F. T. O�??Neill, I. C. Rowsome, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, J. T. Sheridan, �??Photo-embossed optical elements and microfluidic lens fabrication�??, in Photonic Engineering, T. J. Glynn, ed., Proc. SPIE, 5827 (2005).
  21. C. Dixon, Numerical Analysis, Blackie, (Glasgow and London, 1982).
  22. V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, �??Quantitative model of volume hologram formation in photopolymers,�?? J. Appl. Phys. 81, 5913-5923 (1997). [CrossRef]
  23. Metricon Corporation, <a href= �??http://www.metricon.com/appli5.htm#anchor480218�??> http://www.metricon.com/appli5.htm#anchor480218</a>.
  24. J. V. Kelly, M. R. Gleeson, F. T. O�??Neill, J. T. Sheridan, C. Neipp, S. Gallego, M. Ortuno, �??Examination of the temporal and kinetic effects in acrylamide based photopolymer using the nonlocal polymer driven diffusion model (NPDD),�?? in Materials for Holographic and Optical Data Storage, V. Toal, ed., Proc. SPIE, Holo 05,Bulgaria, (2005).
  25. <a href= �??http://chemfinder.cambridgesoft.com�??> http://chemfinder.cambridgesoft.com</a>.
  26. Sigma Aldrich, <a href="http://www.sigmaaldrich.com">http://www.sigmaaldrich.com</a>.
  27. Kirk-Otmer, Encyclopedia of Chemical Technology, Vol. 1, (Wiley, New York, 1991).
  28. F. T. O�??Neill, J. R. Lawrence, J. T. Sheridan, �??Automated recording and testing of holographic optical element arrays,�?? Optik 111, 459-467 (2000).
  29. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O�??Neill, J. T. Sheridan, "The Impact of Inhibition Processes during Grating Formation in Photopolymer Materials", in Photonic Engineering, R. F. O�??Dowd, ed., Proc. SPIE 5827, (2005).
  30. A.V.Galstyan, R. S. Hakobyan, S. H, T.Galstian, �??Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials�?? <a href= �??http://www.elc.org/Documents/T._V_Galstian_2004_05_05_11_13_17.pdf�??> http://www.elc.org/Documents/T.__V_Galstian_2004_05_05_11_13_17.pdf</a>.
  31. The Mathworks, Inc., �??Matlab 6.1,�?? <a href="http://www.mathworks.com">http://www.mathworks.com</a>.
  32. J. Lougnot, P. Jost and L. Lavielle, �??Polymers for holographic recording: VI. Some Basic ideas for modelling the Kinetics of the recording process,�?? Pure and Applied Optics 6, 225-245 (1997).
  33. S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, I. Pascual �??Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,�?? Appl. Opt. 42, 5839-5845 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited